This package provides non-statistical utilities used by the software developed by the Statnet Project.
Get programmatic access to data from the Czech public budgeting and accounting database, Státnà pokladna <https://monitor.statnipokladna.cz/>.
Reliability of (normal) stress-strength models and for building two-sided or one-sided confidence intervals according to different approximate procedures.
Pass named and unnamed character vectors into specified positions in strings. This represents an attempt to replicate some of python's string formatting.
This package provides functions for retrieving general and specific data from the Norwegian Parliament, through the Norwegian Parliament API at <https://data.stortinget.no>.
This package provides R bindings for the Stencila Schema <https://schema.stenci.la>. This package is primarily aimed at R developers wanting to programmatically generate, or modify, executable documents.
These are my collection of R Markdown templates, mostly for compilation to PDF. These are useful for all things academic and professional, if you are using R Markdown for things like your CV or your articles and manuscripts.
Univariate and multivariate normal data simulation. They also supply a brief summary of the analysis for each experiment/design: - Independent samples. - One-way and two-way Anova. - Paired samples (T-Test & Regression). - Repeated measures (Anova & Multiple Regression). - Clinical Assay.
The stress addition approach is an alternative to the traditional concentration addition or effect addition models. It allows the modelling of tri-phasic concentration-response relationships either as single toxicant experiments, in combination with an environmental stressor or as mixtures of two toxicants. See Liess et al. (2019) <doi:10.1038/s41598-019-51645-4> and Liess et al. (2020) <doi:10.1186/s12302-020-00394-7>.
Univariate stratification of survey populations with a generalization of the Lavallee-Hidiroglou method of stratum construction. The generalized method takes into account a discrepancy between the stratification variable and the survey variable. The determination of the optimal boundaries also incorporate, if desired, an anticipated non-response, a take-all stratum for large units, a take-none stratum for small units, and a certainty stratum to ensure that some specific units are in the sample. The well known cumulative root frequency rule of Dalenius and Hodges and the geometric rule of Gunning and Horgan are also implemented.
This package contains several tools for nonlinear regression analyses and general data analysis in biology and agriculture. Contains also datasets for practicing and teaching purposes. Supports the blog: Onofri (2024) "Fixing the bridge between biologists and statisticians" <https://www.statforbiology.com> and the book: Onofri (2024) "Experimental Methods in Agriculture" <https://www.statforbiology.com/_statbookeng/>. The blog is a collection of short articles aimed at improving the efficiency of communication between biologists and statisticians, as pointed out in Kozak (2016) <doi:10.1590/0103-9016-2015-0399>, spreading a better awareness of the potential usefulness, beauty and limitations of biostatistic.
Makes it possible to serve map tiles for web maps (e.g. leaflet) based on a function or a stars object without having to render them in advance. This enables parallelization of the rendering, separating the data source and visualization location and to provide web services.
This package provides a fast implementation with additional experimental features for testing, monitoring and dating structural changes in (linear) regression models. strucchangeRcpp
features tests/methods from the generalized fluctuation test framework as well as from the F test (Chow test) framework. This includes methods to fit, plot and test fluctuation processes (e.g. cumulative/moving sum, recursive/moving estimates) and F statistics, respectively. These methods are described in Zeileis et al. (2002) <doi:10.18637/jss.v007.i02>. Finally, the breakpoints in regression models with structural changes can be estimated together with confidence intervals, and their magnitude as well as the model fit can be evaluated using a variety of statistical measures.
Non-proportional hazard (NPH) is commonly observed in immuno-oncology studies, where the survival curves of the treatment and control groups show delayed separation. To properly account for NPH, several statistical methods have been developed. One such method is Max-Combo test, which is a straightforward and flexible hypothesis testing method that can simultaneously test for constant, early, middle, and late treatment effects. However, the majority of the Max-Combo test performed in clinical studies are unstratified, ignoring the important prognostic stratification factors. To fill this gap, we have developed an R package for stratified Max-Combo testing that accounts for stratified baseline factors. Our package explores various methods for calculating combined test statistics, estimating joint distributions, and determining the p-values.
I provide functions to calculate Gross Primary Productivity, Net Ecosystem Production, and Ecosystem Respiration from single station diurnal Oxygen curves.
Identifies individuals in a social network who should be the intervention subjects for a network intervention in which you have a group of targets, a group of avoiders, and a group that is neither.
Takes a list of character strings and forms an adjacency matrix for the times the specified characters appear together in the strings provided. For use in social network analysis and data wrangling. Simple package, comprised of three functions.
This package provides a unique dataset of historical forest cover across all states in the United States, spanning from 1907 to 2017, along with 1630 as a reference year. This dataset is important for understanding environmental changes and land use trends over time. It includes functionality for easy access of the data.
This package provides tools for creating detailed dataframes for common statistical approaches and tests. These include parametric, nonparametric, robust, and Bayesian t-test, one-way ANOVA, correlation analyses, contingency table analyses, and meta-analyses. The functions are pipe-friendly and provide a consistent syntax to work with tidy data. These dataframes additionally contain expressions with statistical details, and can be used in graphing packages. This package also forms the statistical processing backend for ggstatsplot.
Integrating a stratified structure in the population in a sampling design can considerably reduce the variance of the Horvitz-Thompson estimator. We propose in this package different methods to handle the selection of a balanced sample in stratified population. For more details see Raphaël Jauslin, Esther Eustache and Yves Tillé (2021) <doi:10.1007/s42081-021-00134-y>. The package propose also a method based on optimal transport and balanced sampling, see Raphaël Jauslin and Yves Tillé <doi:10.1016/j.jspi.2022.12.003>.
This package provides a toolkit for stratified medicine, subgroup identification, and precision medicine. Current tools include (1) filtering models (reduce covariate space), (2) patient-level estimate models (counterfactual patient-level quantities, such as the conditional average treatment effect), (3) subgroup identification models (find subsets of patients with similar treatment effects), and (4) treatment effect estimation and inference (for the overall population and discovered subgroups). These tools can be customized and are directly used in PRISM (patient response identifiers for stratified medicine; Jemielita and Mehrotra 2019 <arXiv:1912.03337>
. This package is in beta and will be continually updated.
This package performs Stratified Covariate Balancing with Markov blanket feature selection and use of synthetic cases. See Alemi et al. (2016) <DOI:10.1111/1475-6773.12628>.
This package provides function to estimate multiple change points using marginal likelihood method. See the Manual file in data folder for a detailed description of all functions, and a walk through tutorial. For more information of the method, please see Du, Kao and Kou (2016) <doi:10.1080/01621459.2015.1006365>.
Proposes an original instrument for measuring stakeholder influence on the development of an infrastructure project that is carried through by a municipality, drawing on stakeholder classifications (Mitchell, Agle, & Wood, 1997) and input-output modelling (Hester & Adams, 2013). Mitchell R., Agle B.R., & Wood D.J. <doi:10.2307/259247> Hester, P.T., & Adams, K.M. (2013) <doi:10.1016/j.procs.2013.09.282>.