Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions to read and write ESRI shapefiles.
This package provides functions to perform simulations of ANOVA designs of up to three factors. Calculates the observed power and average observed effect size for all main effects and interactions in the ANOVA, and all simple comparisons between conditions. Includes functions for analytic power calculations and additional helper functions that compute effect sizes for ANOVA designs, observed error rates in the simulations, and functions to plot power curves. Please see Lakens, D., & Caldwell, A. R. (2021). "Simulation-Based Power Analysis for Factorial Analysis of Variance Designs". <doi:10.1177/2515245920951503>.
Calculates sample size for various scenarios, such as sample size to estimate population proportion with stated absolute or relative precision, testing a single proportion with a reference value, to estimate the population mean with stated absolute or relative precision, testing single mean with a reference value and sample size for comparing two unpaired or independent means, comparing two paired means, the sample size For case control studies, estimating the odds ratio with stated precision, testing the odds ratio with a reference value, estimating relative risk with stated precision, testing relative risk with a reference value, testing a correlation coefficient with a specified value, etc. <https://www.academia.edu/39511442/Adequacy_of_Sample_Size_in_Health_Studies#:~:text=Determining%20the%20sample%20size%20for,may%20yield%20statistically%20inconclusive%20results.>.
This package provides a set of RStudio addins that are designed to be used in combination with user-defined RStudio keyboard shortcuts. These addins either: 1) insert text at a cursor position (e.g. insert operators %>%, <<-, %$%, etc.), 2) replace symbols in selected pieces of text (e.g., convert backslashes to forward slashes which results in stings like "c:\data\" converted into "c:/data/") or 3) enclose text with special symbols (e.g., converts "bold" into "**bold**") which is convenient for editing R Markdown files.
Evaluating the biasing impact of geographic features such as airports, cities, roads, rivers in datasets of coordinates based biological collection datasets, by Bayesian estimation of the parameters of a Poisson process. Enables also spatial visualization of sampling bias and includes a set of convenience functions for publication level plotting. Also available as shiny app. The reference for the methodology is: Zizka et al. (2020) <doi:10.1111/ecog.05102>.
This package implements multiple consistent scoring functions (Gneiting T (2011) <doi:10.1198/jasa.2011.r10138>) for assessing point forecasts and point predictions. Detailed documentation of scoring functions properties is included for facilitating interpretation of results.
Compare directories flexibly (by date, content, or both) and synchronize files efficiently, with asymmetric and symmetric modes, helper tools, and visualization support for file management.
Tests for equality of two survival functions based on integrated weighted differences of two Kaplan-Meier curves.
Collection of shiny application styling that are the based on the GOV.UK Design System. See <https://design-system.service.gov.uk/components/> for details.
Fetch data on targeted public investments from Plataforma +Brasil (SICONV) <http://plataformamaisbrasil.gov.br/>, the responsible system for requests, execution, and monitoring of federal discretionary transfers in Brazil.
Traditional methods for analyzing single cell RNA-seq datasets focus solely on gene expression, but this package introduces a novel approach that goes beyond this limitation. Using Gene Ontology terms as features, the package allows for the functional profile of cell populations, and comparison within and between datasets from the same or different species. Our approach enables the discovery of previously unrecognized functional similarities and differences between cell types and has demonstrated success in identifying cell types functional correspondence even between evolutionarily distant species.
Estimate the receiver operating characteristic (ROC) curve, area under the curve (AUC) and optimal cut-off points for individual classification taking into account complex sampling designs when working with complex survey data. Methods implemented in this package are described in: A. Iparragirre, I. Barrio, I. Arostegui (2024) <doi:10.1002/sta4.635>; A. Iparragirre, I. Barrio, J. Aramendi, I. Arostegui (2022) <doi:10.2436/20.8080.02.121>; A. Iparragirre, I. Barrio (2024) <doi:10.1007/978-3-031-65723-8_7>.
This package implements several methods to estimate effects of generalized time-varying treatment strategies on the mean of an outcome at one or more selected follow-up times of interest. Specifically, the package implements the time-smoothed inverse probability weighted estimators described in McGrath et al. (2025) <doi:10.48550/arXiv.2509.13971>. Outcomes may be repeatedly, non-monotonically, informatively, and sparsely measured in the data source. The package also supports settings where outcomes are truncated by death, i.e. some individuals die during follow-up which renders the outcome of interest undefined at the follow-up time of interest.
Bayesian regression tree models with shrinkage priors on step heights. Supports continuous, binary, and right-censored (survival) outcomes. Used for high-dimensional prediction and causal inference.
The stochastic (also called on-line) version of the Self-Organising Map (SOM) algorithm is provided. Different versions of the algorithm are implemented, for numeric and relational data and for contingency tables as described, respectively, in Kohonen (2001) <isbn:3-540-67921-9>, Olteanu & Villa-Vialaneix (2005) <doi:10.1016/j.neucom.2013.11.047> and Cottrell et al (2004) <doi:10.1016/j.neunet.2004.07.010>. The package also contains many plotting features (to help the user interpret the results), can handle (and impute) missing values and is delivered with a graphical user interface based on shiny'.
Data obtained from surveys contains information not only about the survey responses, but also the survey metadata, e.g. the original survey questions and the answer options. The surveydata package makes it easy to keep track of this metadata, and to easily extract columns with specific questions.
Dual interfaces, graphical and programmatic, designed for intuitive applications of Multilevel Regression and Poststratification (MRP). Users can apply the method to a variety of datasets, from electronic health records to sample survey data, through an end-to-end Bayesian data analysis workflow. The package provides robust tools for data cleaning, exploratory analysis, flexible model building, and insightful result visualization. For more details, see Si et al. (2020) <https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2020002/article/00003-eng.pdf?st=iF1_Fbrh> and Si (2025) <doi:10.1214/24-STS932>.
This package provides functions for fitting a sparse partial least squares (SPLS) regression and classification (Chun and Keles (2010) <doi:10.1111/j.1467-9868.2009.00723.x>).
Estimate the abundance of cell clones from the distribution of lengths of DNA fragments (as created by sonication, whence `sonicLength'). The algorithm in "Estimating abundances of retroviral insertion sites from DNA fragment length data" by Berry CC, Gillet NA, Melamed A, Gormley N, Bangham CR, Bushman FD. Bioinformatics; 2012 Mar 15;28(6):755-62 is implemented. The experimental setting and estimation details are described in detail there. Briefly, integration of new DNA in a host genome (due to retroviral infection or gene therapy) can be tracked using DNA sequencing, potentially allowing characterization of the abundance of individual cell clones bearing distinct integration sites. The locations of integration sites can be determined by fragmenting the host DNA (via sonication or fragmentase), breaking the newly integrated DNA at a known sequence, amplifying the fragments containing both host and integrated DNA, sequencing those amplicons, then mapping the host sequences to positions on the reference genome. The relative number of fragments containing a given position in the host genome estimates the relative abundance of cells hosting the corresponding integration site, but that number is not available and the count of amplicons per fragment varies widely. However, the expected number of distinct fragment lengths is a function of the abundance of cells hosting an integration site at a given position and a certain nuisance parameter. The algorithm implicitly estimates that function to estimate the relative abundance.
The sparse vector field consensus (SparseVFC) algorithm (Ma et al., 2013 <doi:10.1016/j.patcog.2013.05.017>) for robust vector field learning. Largely translated from the Matlab functions in <https://github.com/jiayi-ma/VFC>.
This package provides a set of functions to calculate sample size for two-sample difference in means tests. Does adjustments for either nonadherence or variability that comes from using data to estimate parameters.
It is a single cell active pathway analysis tool based on the graph neural network (F. Scarselli (2009) <doi:10.1109/TNN.2008.2005605>; Thomas N. Kipf (2017) <arXiv:1609.02907v4>) to construct the gene-cell association network, infer pathway activity scores from different single cell modalities data, integrate multiple modality data on the same cells into one pathway activity score matrix, identify cell phenotype activated gene modules and parse association networks of gene modules under multiple cell phenotype. In addition, abundant visualization programs are provided to display the results.
Plots that illustrate the flow of information or material.
Proposes application of spectral analysis and jack-knife resampling for multivariate sequence forecasting. The application allows for a fast random search in a compact space of hyper-parameters composed by Sequence Length and Jack-Knife Leave-N-Out.