Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Unsupervised text tokenizer focused on computational efficiency. Wraps the YouTokenToMe library <https://github.com/VKCOM/YouTokenToMe> which is an implementation of fast Byte Pair Encoding (BPE) <https://aclanthology.org/P16-1162/>.
This data set provides information on the fate of passengers on the fatal maiden voyage of the ocean liner "Titanic", summarized according to economic status (class), sex, age and survival. Whereas the base R Titanic data found by calling data("Titanic") is an array resulting from cross-tabulating 2201 observations, these data sets are the individual non-aggregated observations and formatted in a machine learning context with a training sample, a testing sample, and two additional data sets that can be used for deeper machine learning analysis. These data sets are also the data sets downloaded from the Kaggle competition and thus lowers the barrier to entry for users new to R or machine learing.
Does nothing useful, but perhaps does that nothing in an entertaining or informative fashion.
Disaggregates low frequency time series data to higher frequency series. Implements the following methods for temporal disaggregation: Boot, Feibes and Lisman (1967) <DOI:10.2307/2985238>, Chow and Lin (1971) <DOI:10.2307/1928739>, Fernandez (1981) <DOI:10.2307/1924371> and Litterman (1983) <DOI:10.2307/1391858>.
This package provides a common way of validating a biological assay for is through a procedure, where m levels of an analyte are measured with n replicates at each level, and if all m estimates of the coefficient of variation (CV) are less than some prespecified level, then the assay is declared validated for precision within the range of the m analyte levels. Two limitations of this procedure are: there is no clear statistical statement of precision upon passing, and it is unclear how to modify the procedure for assays with constant standard deviation. We provide tools to convert such a procedure into a set of m hypothesis tests. This reframing motivates the m:n:q procedure, which upon completion delivers a 100q% upper confidence limit on the CV. Additionally, for a post-validation assay output of y, the method gives an ``effective standard deviation interval of log(y) plus or minus r, which is a 68% confidence interval on log(mu), where mu is the expected value of the assay output for that sample. Further, the m:n:q procedure can be straightforwardly applied to constant standard deviation assays. We illustrate these tools by applying them to a growth inhibition assay. This is an implementation of the methods described in Fay, Sachs, and Miura (2018) <doi:10.1002/sim.7528>.
Helps the user to build and register schema descriptions of disorganised (messy) tables. Disorganised tables are tables that are not in a topologically coherent form, where packages such as tidyr could be used for reshaping. The schema description documents the arrangement of input tables and is used to reshape them into a standardised (tidy) output format.
Analyse data from longitudinal studies to characterise changes in values of semi-quantitative outcome variables within individual subjects, using high performance C++ code to enable rapid processing of large datasets. A flexible methodology is available for codifying these state transitions.
The Truncated Factor Model is a statistical model designed to handle specific data structures in data analysis. This R package focuses on the Sparse Online Principal Component Estimation method, which is used to calculate data such as the loading matrix and specific variance matrix for truncated data, thereby better explaining the relationship between common factors and original variables. Additionally, the R package also provides other equations for comparison with the Sparse Online Principal Component Estimation method.The philosophy of the package is described in thesis. (2023) <doi:10.1007/s00180-022-01270-z>.
This package provides a tidy set of functions for summarising data, including descriptive statistics, frequency tables with normality testing, and group-wise significance testing. Designed for fast, readable, and easy exploration of both numeric and categorical data.
The modern database TileDB introduces a powerful on-disk format for storing and accessing any complex data based on multi-dimensional arrays. It supports dense and sparse arrays, dataframes and key-values stores, cloud storage ('S3', GCS', Azure'), chunked arrays, multiple compression, encryption and checksum filters, uses a fully multi-threaded implementation, supports parallel I/O, data versioning ('time travel'), metadata and groups. It is implemented as an embeddable cross-platform C++ library with APIs from several languages, and integrations. This package provides the R support.
TensorFlow Hub is a library for the publication, discovery, and consumption of reusable parts of machine learning models. A module is a self-contained piece of a TensorFlow graph, along with its weights and assets, that can be reused across different tasks in a process known as transfer learning. Transfer learning train a model with a smaller dataset, improve generalization, and speed up training.
Non-parametric trend comparison of two independent samples with sequential subsamples. For more details, please refer to Wang, Stapleton, and Chen (2018) <doi:10.1080/00949655.2018.1482492>.
Create publication quality plots and tables for Item Response Theory and Classical Test theory based item analysis, exploratory and confirmatory factor analysis.
Estimates the weights and measure of robustness to treatment effect heterogeneity attached to two-way fixed effects regressions. Clément de Chaisemartin, Xavier D'HaultfŠuille (2020) <DOI: 10.1257/aer.20181169>.
Computes a point pattern in R^2 or on a graph that is representative of a collection of many data patterns. The result is an approximate barycenter (also known as Fréchet mean or prototype) based on a transport-transform metric. Possible choices include Optimal SubPattern Assignment (OSPA) and Spike Time metrics. Details can be found in Müller, Schuhmacher and Mateu (2020) <doi:10.1007/s11222-020-09932-y>.
Runs tests using the testthat package but allows for multiple attempts for a single test. This is useful for noisy or flaky tests that generally pass but can fail due to occasional random errors, such as numeric instability or using random data.
There are some experimental scenarios where each experimental unit receives a sequence of treatments across multiple periods, and treatment effects persist beyond the period of application. It focuses on the construction and calculation of the parametric value of the residual effect designs balanced for carryover effects, also referred to as crossover designs, change-over designs, or repeated measurements designs (Aggarwal and Jha, 2010<doi:10.1080/15598608.2010.10412013>). The primary objective of the package is to generate a new class of Balanced Ternary Residual Effect Designs (BTREDs), balanced for carryover effects tailored explicitly for situations where the number of periods is less than or equal to the number of treatments. In addition, the package provides four new classes of Partially Balanced Ternary Residual Effect Designs (PBTREDs), constructed using incomplete block designs, initial sequences, and rectangular association scheme. In addition, one extra function is included to help study the parametric properties of a given residual effect design.
This package creates a table of descriptive statistics for factor and numeric columns in a data frame. Displays these by groups, if any. Highly customizable, with support for html and pdf provided by kableExtra'. Respects original column order, column labels, and factor level order. See ?tablet.data.frame and vignettes.
This package provides an integrated user interface and workflow for the analysis of running, cycling and swimming data from GPS-enabled tracking devices through the trackeR <https://CRAN.R-project.org/package=trackeR> R package.
Innovative Trend Analysis is a graphical method to examine the trends in time series data. Sequential Mann-Kendall test uses the intersection of prograde and retrograde series to indicate the possible change point in time series data. Distribution free cumulative sum charts indicate location and significance of the change point in time series. Zekai, S. (2011). <doi:10.1061/(ASCE)HE.1943-5584.0000556>. Grayson, R. B. et al. (1996). Hydrological Recipes: Estimation Techniques in Australian Hydrology. Cooperative Research Centre for Catchment Hydrology, Australia, p. 125. Sneyers, S. (1990). On the statistical analysis of series of observations. Technical note no 5 143, WMO No 725 415. Secretariat of the World Meteorological Organization, Geneva, 192 pp.
This package provides functions to estimate the insertion and deletion rates of transposable element (TE) families. The estimation of insertion rate consists of an improved estimate of the age distribution that takes into account random mutations, and an adjustment by the deletion rate. A hypothesis test for a uniform insertion rate is also implemented. This package implements the methods proposed in Dai et al (2018).
This package provides tools to help developers and producers manipulate R objects and outputs. It includes tools for displaying results and objects, and for formatting them in the correct format.
This package provides functions for the computationally efficient simulation of dynamic networks estimated with the statistical framework of temporal exponential random graph models, implemented in the tergm package.
Simplify reporting many tables by creating tibbles of tables. With tabtibble', a tibble of tables is created with captions and automatic printing using knit_print()'.