Crypt::RandPasswd provides three functions that can be used to generate random passwords, constructed from words, letters, or characters. This code is a Perl implementation of the Automated Password Generator standard, like the program described in "A Random Word Generator For Pronounceable Passwords". This code is a re-engineering of the program contained in Appendix A of FIPS Publication 181, "Standard for Automated Password Generator".
This package was factored out of Plots.jl
to allow any other plotting package to use the recipe pipeline. In short, the extremely lightweight RecipesBase.jl
package can be depended on by any package to define "recipes": plot specifications of user-defined types, as well as custom plot types. RecipePipeline.jl
contains the machinery to translate these recipes to full specifications for a plot.
This package provides the alpha-adjustment correction from "Benjamini, Y., & Hochberg, Y. (1995) <doi:10.1111/j.2517-6161.1995.tb02031.x> Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal statistical society: series B (Methodological), 57(1), 289-300". For researchers interested in using the exact mathematical formulas and procedures as used in the original paper.
This package creates a series of sets of graphics and statistics related to the longitudinal cascade, all included in a single object. The longitudinal cascade inputs longitudinal data to identify gaps in the HIV and related cascades by observing differences using time to event and survival methods. The stage definitions are set by the user, with default standard options. Outputs include graphics, datasets, and formal statistical tests.
Nonparametric estimation and inference of a non-decreasing monotone hazard ratio from a right censored survival dataset. The estimator is based on a generalized Grenander typed estimator, and the inference procedure relies on direct plugin estimation of a first order derivative. More details please refer to the paper "Nonparametric inference under a monotone hazard ratio order" by Y. Wu and T. Westling (2023) <doi:10.1214/23-EJS2173>.
This package provides LaTeX macros to easily and concisely typeset vectors and matrices in a flexible way such as to follow the RIGID notation convention. The package enables the user to define custom commands that can then be used in any math-mode environment to efficiently and rigorously typeset the notational elements commonly used in robotics research (and many other fields) for position vectors, rotation matrices, pose matrices, etc.
Bagged OutlierTrees
is an explainable unsupervised outlier detection method based on an ensemble implementation of the existing OutlierTree
procedure (Cortes, 2020). This implementation takes advantage of bootstrap aggregating (bagging) to improve robustness by reducing the possible masking effect and subsequent high variance (similarly to Isolation Forest), hence the name "Bagged OutlierTrees
". To learn more about the base procedure OutlierTree
(Cortes, 2020), please refer to <arXiv:2001.00636>
.
Explains the behavior of a time series by decomposing it into its trend, seasonality and residuals. It is built to perform very well in the presence of significant level shifts. It is designed to play well with any breakpoint algorithm and any smoothing algorithm. Currently defaults to lowess for smoothing and strucchange for breakpoint identification. The package is useful in areas such as trend analysis, time series decomposition, breakpoint identification and anomaly detection.
The strict_rfc3339
Python module provides strict, simple, lightweight RFC3339 procedures. It enables or aims to:
Convert UNIX timestamps to and from RFC3339.
Produce RFC3339 strings with a UTC offset (Z) or with the offset that the C time module reports is the local timezone offset.
Be simple with minimal dependencies/libraries.
Avoid timezones as much as possible.
Be very strict and follow RFC3339.
Special procedures for the imputation of missing fuzzy numbers are still underdeveloped. The goal of the package is to provide the new d-imputation method (DIMP for short, Romaniuk, M. and Grzegorzewski, P. (2023) "Fuzzy Data Imputation with DIMP and FGAIN" RB/23/2023) and covert some classical ones applied in R packages ('missForest','miceRanger','knn
') for use with fuzzy datasets. Additionally, specially tailored benchmarking tests are provided to check and compare these imputation procedures with fuzzy datasets.
Simple and transparent parsing of genotype/dosage data from an input Variant Call Format (VCF) file, matching of genotype coordinates to the component Single Nucleotide Polymorphisms (SNPs) of an existing polygenic score (PGS), and application of SNP weights to dosages for the calculation of a polygenic score for each individual in accordance with the additive weighted sum of dosages model. Methods are designed in reference to best practices described by Collister, Liu, and Clifton (2022) <doi:10.3389/fgene.2022.818574>.
Distribution free heteroscedastic tests for functional data. The following tests are included in this package: test of no main treatment or contrast effect and no simple treatment effect given in Wang, Higgins, and Blasi (2010) <doi:10.1016/j.spl.2009.11.016>, no main time effect, and no interaction effect based on original observations given in Wang and Akritas (2010a) <doi:10.1080/10485250903171621> and tests based on ranks given in Wang and Akritas (2010b) <doi:10.1016/j.jmva.2010.03.012>.
Fast design of risk parity portfolios for financial investment. The goal of the risk parity portfolio formulation is to equalize or distribute the risk contributions of the different assets, which is missing if we simply consider the overall volatility of the portfolio as in the mean-variance Markowitz portfolio. In addition to the vanilla formulation, where the risk contributions are perfectly equalized subject to no shortselling and budget constraints, many other formulations are considered that allow for box constraints and shortselling, as well as the inclusion of additional objectives like the expected return and overall variance. See vignette for a detailed documentation and comparison, with several illustrative examples. The package is based on the papers: Y. Feng, and D. P. Palomar (2015). SCRIP: Successive Convex Optimization Methods for Risk Parity Portfolio Design. IEEE Trans. on Signal Processing, vol. 63, no. 19, pp. 5285-5300. <doi:10.1109/TSP.2015.2452219>. F. Spinu (2013), An Algorithm for Computing Risk Parity Weights. <doi:10.2139/ssrn.2297383>. T. Griveau-Billion, J. Richard, and T. Roncalli (2013). A fast algorithm for computing High-dimensional risk parity portfolios. <arXiv:1311.4057>
.
This package provides SPSS'- and SAS'-like output for cross tabulations of two categorical variables (CROSSTABS) and for hierarchical loglinear analyses of two or more categorical variables (LOGLINEAR). The methods are described in Agresti (2013, ISBN:978-0-470-46363-5), Ajzen & Walker (2021, ISBN:9780429330308), Field (2018, ISBN:9781526440273), Norusis (2012, ISBN:978-0-321-74843-0), Nussbaum (2015, ISBN:978-1-84872-603-1), Stevens (2009, ISBN:978-0-8058-5903-4), Tabachnik & Fidell (2019, ISBN:9780134790541), and von Eye & Mun (2013, ISBN:978-1-118-14640-8).
This is a pedagogical package, designed to help students understanding convergence of random variables. It provides a way to investigate interactively various modes of convergence (in probability, almost surely, in law and in mean) of a sequence of i.i.d. random variables. Visualisation of simulated sample paths is possible through interactive plots. The approach is illustrated by examples and exercises through the function investigate', as described in Lafaye de Micheaux and Liquet (2009) <doi:10.1198/tas.2009.0032>. The user can study his/her own sequences of random variables.
This gem removes common margin from indented strings, such as the ones produced by indented heredocs. In other words, it strips out leading whitespace chars at the beginning of each line, but only as much as the line with the smallest margin.
It is acknowledged that many strings defined by heredocs are just code and fact is that most parsers are insensitive to indentation. If, however, the strings are to be used otherwise, be it for printing or testing, the extra indentation will probably be an issue and hence this gem.
Engineered features and "helper" functions ancillary to the public.ctn0094data package, extending this package for ease of use (see <https://CRAN.R-project.org/package=public.ctn0094data>). This public.ctn0094data package contains harmonized datasets from some of the National Institute of Drug Abuse's Clinical Trials Network (NIDA's CTN) projects. Specifically, the CTN-0094 project is to harmonize and de-identify clinical trials data from the CTN-0027, CTN-0030, and CTN-51 studies for opioid use disorder. This current version is built from public.ctn0094data v. 1.0.6.
Scaling models and classifiers for sparse matrix objects representing textual data in the form of a document-feature matrix. Includes original implementations of Laver', Benoit', and Garry's (2003) <doi:10.1017/S0003055403000698>, Wordscores model, the Perry and Benoit (2017) <doi:10.48550/arXiv.1710.08963>
class affinity scaling model, and the Slapin and Proksch (2008) <doi:10.1111/j.1540-5907.2008.00338.x> wordfish model, as well as methods for correspondence analysis, latent semantic analysis, and fast Naive Bayes and linear SVMs specially designed for sparse textual data.
This package provides methods for analysis of energy consumption data (electricity, gas, water) at different data measurement intervals. The package provides feature extraction methods and algorithms to prepare data for data mining and machine learning applications. Deatiled descriptions of the methods and their application can be found in Hopf (2019, ISBN:978-3-86309-669-4) "Predictive Analytics for Energy Efficiency and Energy Retailing" <doi:10.20378/irbo-54833> and Hopf et al. (2016) <doi:10.1007/s12525-018-0290-9> "Enhancing energy efficiency in the residential sector with smart meter data analytics".
This package provides a fully parameterized Generalized Wendland covariance function for use in Gaussian process models, as well as multiple methods for approximating it via covariance interpolation. The available methods are linear interpolation, polynomial interpolation, and cubic spline interpolation. Moreno Bevilacqua and Reinhard Furrer and Tarik Faouzi and Emilio Porcu (2019) <url:<https://projecteuclid.org/journalArticle/Download?urlId=10.1214%2F17-AOS1652
>>. Moreno Bevilacqua and Christian Caamaño-Carrillo and Emilio Porcu (2022) <arXiv:2008.02904>
. Reinhard Furrer and Roman Flury and Florian Gerber (2022) <url:<https://CRAN.R-project.org/package=spam >>.
Fits a piecewise exponential hazard to survival data using a Hierarchical Bayesian model with an Intrinsic Conditional Autoregressive formulation for the spatial dependency in the hazard rates for each piece. This function uses Metropolis- Hastings-Green MCMC to allow the number of split points to vary and also uses Stochastic Search Variable Selection to determine what covariates drive the risk of the event. This function outputs trace plots depicting the number of split points in the hazard and the number of variables included in the hazard. The function saves all posterior quantities to the desired path.
Data on standard load profiles from the German Association of Energy and Water Industries (BDEW Bundesverband der Energie- und Wasserwirtschaft e.V.) in a tidy format. The data and methodology are described in VDEW (1999), "Repräsentative VDEW-Lastprofile", <https://www.bdew.de/media/documents/1999_Repraesentative-VDEW-Lastprofile.pdf>. The package also offers an interface for generating a standard load profile over a user-defined period. For the algorithm, see VDEW (2000), "Anwendung der Repräsentativen VDEW-Lastprofile step-by-step", <https://www.bdew.de/media/documents/2000131_Anwendung-repraesentativen_Lastprofile-Step-by-step.pdf>.
The classical Markowitz's mean-variance portfolio formulation ignores heavy tails and skewness. High-order portfolios use higher order moments to better characterize the return distribution. Different formulations and fast algorithms are proposed for high-order portfolios based on the mean, variance, skewness, and kurtosis. The package is based on the papers: R. Zhou and D. P. Palomar (2021). "Solving High-Order Portfolios via Successive Convex Approximation Algorithms." <arXiv:2008.00863>
. X. Wang, R. Zhou, J. Ying, and D. P. Palomar (2022). "Efficient and Scalable High-Order Portfolios Design via Parametric Skew-t Distribution." <arXiv:2206.02412>
.
Calculate the injury severity score (ISS) based on the dictionary in ICDPIC from <https://ideas.repec.org/c/boc/bocode/s457028.html>. The original code was written in STATA 11'. The original STATA code was written by David Clark, Turner Osler and David Hahn. I implement the same logic for easier access. Ref: David E. Clark & Turner M. Osler & David R. Hahn, 2009. "ICDPIC: Stata module to provide methods for translating International Classification of Diseases (Ninth Revision) diagnosis codes into standard injury categories and/or scores," Statistical Software Components S457028, Boston College Department of Economics, revised 29 Oct 2010.