Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides QDNAseq bin annotations for the human genome build hg19.
This package provides a streamlined workflow for the quanTIseq method, developed to perform the quantification of the Tumor Immune contexture from RNA-seq data. The quantification is performed against the TIL10 signature (dissecting the contributions of ten immune cell types), carefully crafted from a collection of human RNA-seq samples. The TIL10 signature has been extensively validated using simulated, flow cytometry, and immunohistochemistry data.
Smooth quantile normalization is a generalization of quantile normalization, which is average of the two types of assumptions about the data generation process: quantile normalization and quantile normalization between groups.
This package provides QDNAseq bin annotations for the mouse genome build mm10.
qsea (quantitative sequencing enrichment analysis) was developed as the successor of the MEDIPS package for analyzing data derived from methylated DNA immunoprecipitation (MeDIP) experiments followed by sequencing (MeDIP-seq). However, qsea provides several functionalities for the analysis of other kinds of quantitative sequencing data (e.g. ChIP-seq, MBD-seq, CMS-seq and others) including calculation of differential enrichment between groups of samples.
The package contains functions to perform normalization of high-throughput qPCR data. Basic functions for processing raw Ct data plus functions to generate diagnostic plots are also available.
Set of utility functions for viral quasispecies analysis with NGS data. Most functions are equally useful for metagenomic studies. There are three main types: (1) data manipulation and exploration—functions useful for converting reads to haplotypes and frequencies, repairing reads, intersecting strand haplotypes, and visualizing haplotype alignments. (2) diversity indices—functions to compute diversity and entropy, in which incidence, abundance, and functional indices are considered. (3) data simulation—functions useful for generating random viral quasispecies data.
RnBeads annotation package for the assembly hg38.
This package provides a package containing an environment representing the RG_U34A.cdf file.
rifiComparative is a continuation of rifi package. It compares two conditions output of rifi using half-life and mRNA at time 0 segments. As an input for the segmentation, the difference between half-life of both condtions and log2FC of the mRNA at time 0 are used. The package provides segmentation, statistics, summary table, fragments visualization and some additional useful plots for further anaylsis.
RUVcorr allows to apply global removal of unwanted variation (ridged version of RUV) to real and simulated gene expression data.
RNAeditr analyzes site-specific RNA editing events, as well as hyper-editing regions. The editing frequencies can be tested against binary, continuous or survival outcomes. Multiple covariate variables as well as interaction effects can also be incorporated in the statistical models.
Annotation data file for ratCHRLOC assembled using data from public data repositories.
Despite the recent advances of modern GWAS methods, it still remains an important problem of addressing calculation an effect size and corresponding p-value for the whole gene rather than for single variant. The R- package rqt offers gene-level GWAS meta-analysis. For more information, see: "Gene-set association tests for next-generation sequencing data" by Lee et al (2016), Bioinformatics, 32(17), i611-i619, <doi:10.1093/bioinformatics/btw429>.
There is an increasing focus to investigate the association between rare variants and diseases. The REBET package implements the subREgion-based BurdEn Test which is a powerful burden test that simultaneously identifies susceptibility loci and sub-regions.
RUVnormalize is meant to remove unwanted variation from gene expression data when the factor of interest is not defined, e.g., to clean up a dataset for general use or to do any kind of unsupervised analysis.
An R package which interfaces the OME Bio-Formats Java library to allow reading of proprietary microscopy image data and metadata.
Codelink Rat Inflammation 16 Bioarray annotation data (chip ri16cod) assembled using data from public repositories.
Microarray Classification is designed for both biologists and statisticians. It offers the ability to train a classifier on a labelled microarray dataset and to then use that classifier to predict the class of new observations. A range of modern classifiers are available, including support vector machines (SVMs), nearest shrunken centroids (NSCs)... Advanced methods are provided to estimate the predictive error rate and to report the subset of genes which appear essential in discriminating between classes.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was Rat230\_2\_probe\_tab.
The package analyzes the Curve ROC, identificates it among different types of Curve ROC and calculates the area under de curve through the method that is most accuracy. This package is able to standarizate proper and improper pAUC.
This package uses non-parametric methods to detect rhythms in time series. It deals with outliers, missing values and is optimized for time series comprising 10-100 measurements. As it does not assume expect any distinct waveform it is optimal or detecting oscillating behavior (e.g. circadian or cell cycle) in e.g. genome- or proteome-wide biological measurements such as: micro arrays, proteome mass spectrometry, or metabolome measurements.
The RNAseqCovarImpute package makes linear model analysis for RNA sequencing read counts compatible with multiple imputation (MI) of missing covariates. A major problem with implementing MI in RNA sequencing studies is that the outcome data must be included in the imputation prediction models to avoid bias. This is difficult in omics studies with high-dimensional data. The first method we developed in the RNAseqCovarImpute package surmounts the problem of high-dimensional outcome data by binning genes into smaller groups to analyze pseudo-independently. This method implements covariate MI in gene expression studies by 1) randomly binning genes into smaller groups, 2) creating M imputed datasets separately within each bin, where the imputation predictor matrix includes all covariates and the log counts per million (CPM) for the genes within each bin, 3) estimating gene expression changes using `limma::voom` followed by `limma::lmFit` functions, separately on each M imputed dataset within each gene bin, 4) un-binning the gene sets and stacking the M sets of model results before applying the `limma::squeezeVar` function to apply a variance shrinking Bayesian procedure to each M set of model results, 5) pooling the results with Rubins’ rules to produce combined coefficients, standard errors, and P-values, and 6) adjusting P-values for multiplicity to account for false discovery rate (FDR). A faster method uses principal component analysis (PCA) to avoid binning genes while still retaining outcome information in the MI models. Binning genes into smaller groups requires that the MI and limma-voom analysis is run many times (typically hundreds). The more computationally efficient MI PCA method implements covariate MI in gene expression studies by 1) performing PCA on the log CPM values for all genes using the Bioconductor `PCAtools` package, 2) creating M imputed datasets where the imputation predictor matrix includes all covariates and the optimum number of PCs to retain (e.g., based on Horn’s parallel analysis or the number of PCs that account for >80% explained variation), 3) conducting the standard limma-voom pipeline with the `voom` followed by `lmFit` followed by `eBayes` functions on each M imputed dataset, 4) pooling the results with Rubins’ rules to produce combined coefficients, standard errors, and P-values, and 5) adjusting P-values for multiplicity to account for false discovery rate (FDR).
Affymetrix Affymetrix RAE230B Array annotation data (chip rae230b) assembled using data from public repositories.