Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package was created by frmaTools version 1.13.0.
Affymetrix mogene10 annotation data (chip mogene10sttranscriptcluster) assembled using data from public repositories.
Store minor allele frequency data from the Genome Aggregation Database (gnomAD exomes release 2.1) for the human genome version GRCh38.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was MOE430A\_probe\_tab.
Our pipeline, MICSQTL, utilizes scRNA-seq reference and bulk transcriptomes to estimate cellular composition in the matched bulk proteomes. The expression of genes and proteins at either bulk level or cell type level can be integrated by Angle-based Joint and Individual Variation Explained (AJIVE) framework. Meanwhile, MICSQTL can perform cell-type-specic quantitative trait loci (QTL) mapping to proteins or transcripts based on the input of bulk expression data and the estimated cellular composition per molecule type, without the need for single cell sequencing. We use matched transcriptome-proteome from human brain frontal cortex tissue samples to demonstrate the input and output of our tool.
MODA can be used to estimate and construct condition-specific gene co-expression networks, and identify differentially expressed subnetworks as conserved or condition specific modules which are potentially associated with relevant biological processes.
MethylMix is an algorithm implemented to identify hyper and hypomethylated genes for a disease. MethylMix is based on a beta mixture model to identify methylation states and compares them with the normal DNA methylation state. MethylMix uses a novel statistic, the Differential Methylation value or DM-value defined as the difference of a methylation state with the normal methylation state. Finally, matched gene expression data is used to identify, besides differential, functional methylation states by focusing on methylation changes that effect gene expression. References: Gevaert 0. MethylMix: an R package for identifying DNA methylation-driven genes. Bioinformatics (Oxford, England). 2015;31(11):1839-41. doi:10.1093/bioinformatics/btv020. Gevaert O, Tibshirani R, Plevritis SK. Pancancer analysis of DNA methylation-driven genes using MethylMix. Genome Biology. 2015;16(1):17. doi:10.1186/s13059-014-0579-8.
This package provides a package containing an environment representing the miRNA-1_0_2Xgain.CDF file.
MaAsLin 3 refines and extends generalized multivariate linear models for meta-omicron association discovery. It finds abundance and prevalence associations between microbiome meta-omics features and complex metadata in population-scale epidemiological studies. The software includes multiple analysis methods (including support for multiple covariates, repeated measures, and ordered predictors), filtering, normalization, and transform options to customize analysis for your specific study.
The MicrobiomeExplorer R package is designed to facilitate the analysis and visualization of marker-gene survey feature data. It allows a user to perform and visualize typical microbiome analytical workflows either through the command line or an interactive Shiny application included with the package. In addition to applying common analytical workflows the application enables automated analysis report generation.
MsImpute is a package for imputation of peptide intensity in proteomics experiments. It additionally contains tools for MAR/MNAR diagnosis and assessment of distortions to the probability distribution of the data post imputation. The missing values are imputed by low-rank approximation of the underlying data matrix if they are MAR (method = "v2"), by Barycenter approach if missingness is MNAR ("v2-mnar"), or by Peptide Identity Propagation (PIP).
The MAIT package contains functions to perform end-to-end statistical analysis of LC/MS Metabolomic Data. Special emphasis is put on peak annotation and in modular function design of the functions.
This package allows to estimate chronological and gestational DNA methylation (DNAm) age as well as biological age using different methylation clocks. Chronological DNAm age (in years) : Horvath's clock, Hannum's clock, BNN, Horvath's skin+blood clock, PedBE clock and Wu's clock. Gestational DNAm age : Knight's clock, Bohlin's clock, Mayne's clock and Lee's clocks. Biological DNAm clocks : Levine's clock and Telomere Length's clock.
This package provides a package containing an environment representing the Maize.cdf file.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was MOE430B\_probe\_tab.
Gut 16S sequencing expression data from 992 healthy and moderate-to-severe diarrhetic samples used in Diarrhea in young children from low-income countries leads to large-scale alterations in intestinal microbiota composition'.
MEDIPS was developed for analyzing data derived from methylated DNA immunoprecipitation (MeDIP) experiments followed by sequencing (MeDIP-seq). However, MEDIPS provides functionalities for the analysis of any kind of quantitative sequencing data (e.g. ChIP-seq, MBD-seq, CMS-seq and others) including calculation of differential coverage between groups of samples and saturation and correlation analysis.
MoleculeExperiment contains functions to create and work with objects from the new MoleculeExperiment class. We introduce this class for analysing molecule-based spatial transcriptomics data (e.g., Xenium by 10X, Cosmx SMI by Nanostring, and Merscope by Vizgen). This allows researchers to analyse spatial transcriptomics data at the molecule level, and to have standardised data formats accross vendors.
Affymetrix Affymetrix MG_U74A Array annotation data (chip mgu74a) assembled using data from public repositories.
Affymetrix mogene21 annotation data (chip mogene21stprobeset) assembled using data from public repositories.
Store minor allele frequency data from the Exome Aggregation Consortium (ExAC release 1.0 subset of nonTCGA exomes) for the human genome version GRCh38.
mistyR is an implementation of the Multiview Intercellular SpaTialmodeling framework (MISTy). MISTy is an explainable machine learning framework for knowledge extraction and analysis of single-cell, highly multiplexed, spatially resolved data. MISTy facilitates an in-depth understanding of marker interactions by profiling the intra- and intercellular relationships. MISTy is a flexible framework able to process a custom number of views. Each of these views can describe a different spatial context, i.e., define a relationship among the observed expressions of the markers, such as intracellular regulation or paracrine regulation, but also, the views can also capture cell-type specific relationships, capture relations between functional footprints or focus on relations between different anatomical regions. Each MISTy view is considered as a potential source of variability in the measured marker expressions. Each MISTy view is then analyzed for its contribution to the total expression of each marker and is explained in terms of the interactions with other measurements that led to the observed contribution.
Base annotation databases for mouse, intended ONLY to be used by AnnotationDbi to produce regular annotation packages.
The Mergeomics pipeline serves as a flexible framework for integrating multidimensional omics-disease associations, functional genomics, canonical pathways and gene-gene interaction networks to generate mechanistic hypotheses. It includes two main parts, 1) Marker set enrichment analysis (MSEA); 2) Weighted Key Driver Analysis (wKDA).