_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-dsfm 1.0.1
Propagated dependencies: r-sopc@0.1.0 r-sn@2.1.1 r-psych@2.5.6 r-matrixcalc@1.0-6 r-mass@7.3-65 r-elasticnet@1.3
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://cran.r-project.org/package=DSFM
Licenses: Expat
Synopsis: Distributed Skew Factor Model Estimation Methods
Description:

This package provides a distributed framework for simulating and estimating skew factor models under various skewed and heavy-tailed distributions. The methods support distributed data generation, aggregation of local estimators, and evaluation of estimation performance via mean squared error, relative error, and sparsity measures. The distributed principal component (PC) estimators implemented in the package include IPC (Independent Principal Component),'PPC (Project Principal Component), SPC (Sparse Principal Component), and other related distributed PC methods. The methodological background follows Guo G. (2023) <doi:10.1007/s00180-022-01270-z>.

r-fgeo 1.1.4
Propagated dependencies: r-rstudioapi@0.17.1 r-rlang@1.1.6 r-purrr@1.2.0 r-magrittr@2.0.4 r-glue@1.8.0 r-fgeo-x@1.1.4 r-fgeo-tool@1.2.10 r-fgeo-plot@1.1.11 r-fgeo-analyze@1.1.15 r-dplyr@1.1.4 r-crayon@1.5.3 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: http://forestgeo.github.io/fgeo
Licenses: GPL 3
Synopsis: Analyze Forest Diversity and Dynamics
Description:

To help you access, transform, analyze, and visualize ForestGEO data, we developed a collection of R packages (<https://forestgeo.github.io/fgeo/>). This package, in particular, helps you to install and load the entire package-collection with a single R command, and provides convenient ways to find relevant documentation. Most commonly, you should not worry about the individual packages that make up the package-collection as you can access all features via this package. To learn more about ForestGEO visit <http://www.forestgeo.si.edu/>.

r-frab 0.0-6
Propagated dependencies: r-rcpp@1.1.0 r-disordr@0.9-8-5
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://github.com/RobinHankin/frab
Licenses: GPL 2+
Synopsis: How to Add Two R Tables
Description:

This package provides methods to "add" two R tables; also an alternative interpretation of named vectors as generalized R tables, so that c(a=1,b=2,c=3) + c(b=3,a=-1) will return c(b=5,c=3). Uses disordR discipline (Hankin, 2022, <doi:10.48550/arXiv.2210.03856>). Extraction and replacement methods are provided. The underlying mathematical structure is the Free Abelian group, hence the name. To cite in publications please use Hankin (2023) <doi:10.48550/arXiv.2307.13184>.

r-ibst 1.2
Propagated dependencies: r-survival@3.8-3 r-rpart@4.1.24 r-rcpp@1.1.0
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://cran.r-project.org/package=iBST
Licenses: GPL 2+
Synopsis: Improper Bagging Survival Tree
Description:

Fit a full or subsampling bagging survival tree on a mixture of population (susceptible and nonsusceptible) using either a pseudo R2 criterion or an adjusted Logrank criterion. The predictor is evaluated using the Out Of Bag Integrated Brier Score (IBS) and several scores of importance are computed for variable selection. The thresholds values for variable selection are computed using a nonparametric permutation test. See Cyprien Mbogning and Philippe Broet (2016)<doi:10.1186/s12859-016-1090-x> for an overview about the methods implemented in this package.

r-ifit 1.0.0
Propagated dependencies: r-rcpp@1.1.0 r-lpsolve@5.6.23
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://cran.r-project.org/package=ifit
Licenses: Expat
Synopsis: Simulation-Based Fitting of Parametric Models with Minimum Prior Information
Description:

This package implements an algorithm for fitting a generative model with an intractable likelihood using only box constraints on the parameters. The implemented algorithm consists of two phases. The first phase (global search) aims to identify the region containing the best solution, while the second phase (local search) refines this solution using a trust-region version of the Fisher scoring method to solve a quasi-likelihood equation. See Guido Masarotto (2025) <doi:10.48550/arXiv.2511.08180> for the details of the algorithm and supporting results.

r-mlmi 1.1.3
Propagated dependencies: r-norm@1.0-11.1 r-nlme@3.1-168 r-mix@1.0-13 r-matrix@1.7-4 r-mass@7.3-65 r-gsl@2.1-9 r-cat@0.0-9
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=mlmi
Licenses: GPL 3
Synopsis: Maximum Likelihood Multiple Imputation
Description:

This package implements proper and so-called Maximum Likelihood Multiple Imputation as described by von Hippel and Bartlett (2021) <doi:10.1214/20-STS793>. A number of different imputation methods are available, by utilising the norm', cat and mix packages. Inferences can be performed either using Rubin's rules (for proper imputation), or a modified version for maximum likelihood imputation. For maximum likelihood imputations a likelihood score based approach based on theory by Wang and Robins (1998) <doi:10.1093/biomet/85.4.935> is also available.

r-mdmb 1.9-22
Propagated dependencies: r-sirt@4.2-133 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-miceadds@3.18-36 r-coda@0.19-4.1 r-cdm@8.3-14
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/alexanderrobitzsch/mdmb
Licenses: GPL 2+
Synopsis: Model Based Treatment of Missing Data
Description:

This package contains model-based treatment of missing data for regression models with missing values in covariates or the dependent variable using maximum likelihood or Bayesian estimation (Ibrahim et al., 2005; <doi:10.1198/016214504000001844>; Luedtke, Robitzsch, & West, 2020a, 2020b; <doi:10.1080/00273171.2019.1640104><doi:10.1037/met0000233>). The regression model can be nonlinear (e.g., interaction effects, quadratic effects or B-spline functions). Multilevel models with missing data in predictors are available for Bayesian estimation. Substantive-model compatible multiple imputation can be also conducted.

r-page 0.4.0
Propagated dependencies: r-rsqlite@2.4.4 r-randomforest@4.7-1.2 r-network@1.19.0 r-metrica@2.1.0 r-mass@7.3-65 r-lars@1.3 r-glasso@1.11 r-ggally@2.4.0 r-caret@7.0-1
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://cran.r-project.org/package=PAGE
Licenses: GPL 3
Synopsis: Predictor-Assisted Graphical Models under Error-in-Variables
Description:

We consider the network structure detection for variables Y with auxiliary variables X accommodated, which are possibly subject to measurement error. The following three functions are designed to address various structures by different methods : one is NP_Graph() that is used for handling the nonlinear relationship between the responses and the covariates, another is Joint_Gaussian() that is used for correction in linear regression models via the Gaussian maximum likelihood, and the other Cond_Gaussian() is for linear regression models via conditional likelihood function.

r-scpi 3.0.1
Propagated dependencies: r-tidyr@1.3.1 r-tibble@3.3.0 r-stringr@1.6.0 r-rlang@1.1.6 r-reshape2@1.4.5 r-rdpack@2.6.4 r-qtools@1.6.0 r-purrr@1.2.0 r-matrix@1.7-4 r-mass@7.3-65 r-magrittr@2.0.4 r-ggplot2@4.0.1 r-foreach@1.5.2 r-fastdummies@1.7.5 r-ecosolver@0.5.5 r-dplyr@1.1.4 r-dosnow@1.0.20 r-cvxr@1.0-15 r-abind@1.4-8
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://nppackages.github.io/scpi/
Licenses: GPL 2
Synopsis: Prediction Intervals for Synthetic Control Methods with Multiple Treated Units and Staggered Adoption
Description:

Implementation of prediction and inference procedures for Synthetic Control methods using least square, lasso, ridge, or simplex-type constraints. Uncertainty is quantified with prediction intervals as developed in Cattaneo, Feng, and Titiunik (2021) <doi:10.1080/01621459.2021.1979561> for a single treated unit and in Cattaneo, Feng, Palomba, and Titiunik (2025) <doi:10.1162/rest_a_01588> for multiple treated units and staggered adoption. More details about the software implementation can be found in Cattaneo, Feng, Palomba, and Titiunik (2025) <doi:10.18637/jss.v113.i01>.

r-trip 1.10.0
Propagated dependencies: r-viridis@0.6.5 r-traipse@0.3.0 r-spatstat-geom@3.6-1 r-spatstat-explore@3.6-0 r-sp@2.2-0 r-rlang@1.1.6 r-reproj@0.7.0 r-raster@3.6-32 r-mass@7.3-65 r-glue@1.8.0 r-geodist@0.1.1 r-dplyr@1.1.4 r-crsmeta@0.3.0
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://github.com/Trackage/trip
Licenses: GPL 3
Synopsis: Tracking Data
Description:

Access and manipulate spatial tracking data, with straightforward coercion from and to other formats. Filter for speed and create time spent maps from tracking data. There are coercion methods to convert between trip and ltraj from adehabitatLT', and between trip and psp and ppp from spatstat'. Trip objects can be created from raw or grouped data frames, and from types in the sp', sf', amt', trackeR', mousetrap', and other packages, Sumner, MD (2011) <https://figshare.utas.edu.au/articles/thesis/The_tag_location_problem/23209538>.

r-bang 1.0.4
Propagated dependencies: r-rust@1.4.3 r-bayesplot@1.14.0
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://paulnorthrop.github.io/bang/
Licenses: GPL 2+
Synopsis: Bayesian Analysis, No Gibbs
Description:

This package provides functions for the Bayesian analysis of some simple commonly-used models, without using Markov Chain Monte Carlo (MCMC) methods such as Gibbs sampling. The rust package <https://cran.r-project.org/package=rust> is used to simulate a random sample from the required posterior distribution, using the generalized ratio-of-uniforms method. See Wakefield, Gelfand and Smith (1991) <DOI:10.1007/BF01889987> for details. At the moment three conjugate hierarchical models are available: beta-binomial, gamma-Poisson and a 1-way analysis of variance (ANOVA).

r-cpss 0.0.3
Propagated dependencies: r-tidyr@1.3.1 r-tibble@3.3.0 r-rlang@1.1.6 r-rfast@2.1.5.2 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-mvtnorm@1.3-3 r-magrittr@2.0.4 r-gridextra@2.3 r-ggplot2@4.0.1 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/ghwang-nk/cpss
Licenses: GPL 3+
Synopsis: Change-Point Detection by Sample-Splitting Methods
Description:

This package implements multiple change searching algorithms for a variety of frequently considered parametric change-point models. In particular, it integrates a criterion proposed by Zou, Wang and Li (2020) <doi:10.1214/19-AOS1814> to select the number of change-points in a data-driven fashion. Moreover, it also provides interfaces for user-customized change-point models with one's own cost function and parameter estimation routine. It is easy to get started with the cpss.* set of functions by accessing their documentation pages (e.g., ?cpss).

r-ctxr 1.1.3
Propagated dependencies: r-urltools@1.7.3.1 r-tidyr@1.3.1 r-tibble@3.3.0 r-stringr@1.6.0 r-rlang@1.1.6 r-purrr@1.2.0 r-lifecycle@1.0.4 r-jsonlite@2.0.0 r-httr@1.4.7 r-data-table@1.17.8 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/USEPA/ctxR
Licenses: GPL 3+
Synopsis: Utilities for Interacting with the 'CTX' APIs
Description:

Access chemical, hazard, bioactivity, and exposure data from the Computational Toxicology and Exposure ('CTX') APIs <https://www.epa.gov/comptox-tools/computational-toxicology-and-exposure-apis>. ctxR was developed to streamline the process of accessing the information available through the CTX APIs without requiring prior knowledge of how to use APIs. Most data is also available on the CompTox Chemical Dashboard ('CCD') <https://comptox.epa.gov/dashboard/> and other resources found at the EPA Computational Toxicology and Exposure Online Resources <https://www.epa.gov/comptox-tools>.

r-dpit 1.0
Propagated dependencies: r-vgam@1.1-13 r-moments@0.14.1 r-gsl@2.1-9 r-fitdistrplus@1.2-4
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://cran.r-project.org/package=Dpit
Licenses: GPL 2+
Synopsis: Distribution Pitting
Description:

Compares distributions with one another in terms of their fit to each sample in a dataset that contains multiple samples, as described in Joo, Aguinis, and Bradley (in press). Users can examine the fit of seven distributions per sample: pure power law, lognormal, exponential, power law with an exponential cutoff, normal, Poisson, and Weibull. Automation features allow the user to compare all distributions for all samples with a single command line, which creates a separate row containing results for each sample until the entire dataset has been analyzed.

r-fpop 2019.08.26
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://cran.r-project.org/package=fpop
Licenses: LGPL 2.1+
Synopsis: Segmentation using Optimal Partitioning and Function Pruning
Description:

This package provides a dynamic programming algorithm for the fast segmentation of univariate signals into piecewise constant profiles. The fpop package is a wrapper to a C++ implementation of the fpop (Functional Pruning Optimal Partioning) algorithm described in Maidstone et al. 2017 <doi:10.1007/s11222-016-9636-3>. The problem of detecting changepoints in an univariate sequence is formulated in terms of minimising the mean squared error over segmentations. The fpop algorithm exactly minimizes the mean squared error for a penalty linear in the number of changepoints.

r-gptr 0.7.0
Propagated dependencies: r-rcurl@1.98-1.17 r-jsonlite@2.0.0
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=gptr
Licenses: Expat
Synopsis: Convenient R Interface with the OpenAI 'ChatGPT' API
Description:

This package provides a convenient interface with the OpenAI ChatGPT API <https://openai.com/api>. gptr allows you to interact with ChatGPT', a powerful language model, for various natural language processing tasks. The gptr R package makes talking to ChatGPT in R super easy. It helps researchers and data folks by simplifying the complicated stuff, like asking questions and getting answers. With gptr', you can use ChatGPT in R without any hassle, making it simpler for everyone to do cool things with language!

r-hmmm 1.0-5
Propagated dependencies: r-quadprog@1.5-8 r-nleqslv@3.3.5 r-mvtnorm@1.3-3 r-mass@7.3-65
Channel: guix-cran
Location: guix-cran/packages/h.scm (guix-cran packages h)
Home page: https://www.r-project.org
Licenses: GPL 2+
Synopsis: Hierarchical Multinomial Marginal Models
Description:

This package provides functions for specifying and fitting marginal models for contingency tables proposed by Bergsma and Rudas (2002) <doi:10.1214/aos/1015362188> here called hierarchical multinomial marginal models (hmmm) and their extensions presented by Bartolucci, Colombi and Forcina (2007) <https://www.jstor.org/stable/24307737>; multinomial Poisson homogeneous (mph) models and homogeneous linear predictor (hlp) models for contingency tables proposed by Lang (2004) <doi:10.1214/aos/1079120140> and Lang (2005) <doi:10.1198/016214504000001042>. Inequality constraints on the parameters are allowed and can be tested.

r-lfmm 1.1
Propagated dependencies: r-rspectra@0.16-2 r-rmarkdown@2.30 r-readr@2.1.6 r-rcppeigen@0.3.4.0.2 r-rcpp@1.1.0 r-purrr@1.2.0 r-mass@7.3-65 r-knitr@1.50 r-ggplot2@4.0.1 r-foreach@1.5.2
Channel: guix-cran
Location: guix-cran/packages/l.scm (guix-cran packages l)
Home page: https://cran.r-project.org/package=lfmm
Licenses: GPL 3
Synopsis: Latent Factor Mixed Models
Description:

Fast and accurate inference of gene-environment associations (GEA) in genome-wide studies (Caye et al., 2019, <doi:10.1093/molbev/msz008>). We developed a least-squares estimation approach for confounder and effect sizes estimation that provides a unique framework for several categories of genomic data, not restricted to genotypes. The speed of the new algorithm is several times faster than the existing GEA approaches, then our previous version of the LFMM program present in the LEA package (Frichot and Francois, 2015, <doi:10.1111/2041-210X.12382>).

r-mrpc 3.2.0
Propagated dependencies: r-wgcna@1.73 r-rgraphviz@2.54.0 r-psych@2.5.6 r-plyr@1.8.9 r-pcalg@2.7-12 r-network@1.19.0 r-mice@3.18.0 r-hmisc@5.2-4 r-gtools@3.9.5 r-graph@1.88.0 r-ggally@2.4.0 r-fastcluster@1.3.0 r-dynamictreecut@1.63-1 r-compositions@2.0-9 r-bnlearn@5.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MRPC
Licenses: GPL 2+
Synopsis: PC Algorithm with the Principle of Mendelian Randomization
Description:

This package provides a PC Algorithm with the Principle of Mendelian Randomization. This package implements the MRPC (PC with the principle of Mendelian randomization) algorithm to infer causal graphs. It also contains functions to simulate data under a certain topology, to visualize a graph in different ways, and to compare graphs and quantify the differences. See Badsha and Fu (2019) <doi:10.3389/fgene.2019.00460>, Badsha, Martin and Fu (2021) <doi:10.3389/fgene.2021.651812>, Kvamme and Badsha, et al. (2025) <doi:10.1093/genetics/iyaf064>.

r-pcra 1.2
Propagated dependencies: r-zoo@1.8-14 r-xts@0.14.1 r-robustbase@0.99-6 r-robstattm@1.0.11 r-r-cache@0.17.0 r-quadprog@1.5-8 r-portfolioanalytics@2.1.0 r-performanceanalytics@2.0.8 r-lattice@0.22-7 r-data-table@1.17.8 r-corpcor@1.6.10 r-boot@1.3-32
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://cran.r-project.org/package=PCRA
Licenses: GPL 2
Synopsis: Companion to Portfolio Construction and Risk Analysis
Description:

This package provides a collection of functions and data sets that support teaching a quantitative finance MS level course on Portfolio Construction and Risk Analysis, and the writing of a textbook for such a course. The package is unique in providing several real-world data sets that may be used for problem assignments and student projects. The data sets include cross-sections of stock data from the Center for Research on Security Prices, LLC (CRSP), corresponding factor exposures data from S&P Global, and several SP500 data sets.

r-stpm 1.7.12
Propagated dependencies: r-survival@3.8-3 r-sas7bdat@0.8 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-nloptr@2.2.1 r-mass@7.3-65
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=stpm
Licenses: GPL 2+ GPL 3+
Synopsis: Stochastic Process Model for Analysis of Longitudinal and Time-to-Event Outcomes
Description:

Utilities to estimate parameters of the models with survival functions induced by stochastic covariates. Miscellaneous functions for data preparation and simulation are also provided. For more information, see: (i)"Stochastic model for analysis of longitudinal data on aging and mortality" by Yashin A. et al. (2007), Mathematical Biosciences, 208(2), 538-551, <DOI:10.1016/j.mbs.2006.11.006>; (ii) "Health decline, aging and mortality: how are they related?" by Yashin A. et al. (2007), Biogerontology 8(3), 291(302), <DOI:10.1007/s10522-006-9073-3>.

r-sccs 1.7
Propagated dependencies: r-survival@3.8-3 r-r-methodss3@1.8.2 r-gnm@1.1-5 r-fda@6.3.0 r-corpcor@1.6.10
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SCCS
Licenses: GPL 2+
Synopsis: The Self-Controlled Case Series Method
Description:

Various self-controlled case series models used to investigate associations between time-varying exposures such as vaccines or other drugs or non drug exposures and an adverse event can be fitted. Detailed information on the self-controlled case series method and its extensions with more examples can be found in Farrington, P., Whitaker, H., and Ghebremichael Weldeselassie, Y. (2018, ISBN: 978-1-4987-8159-6. Self-controlled Case Series studies: A modelling Guide with R. Boca Raton: Chapman & Hall/CRC Press) and <https://sccs-studies.info/index.html>.

r-gsva 2.4.1
Propagated dependencies: r-biobase@2.70.0 r-biocgenerics@0.56.0 r-biocparallel@1.44.0 r-biocsingular@1.26.1 r-cli@3.6.5 r-delayedarray@0.36.0 r-delayedmatrixstats@1.32.0 r-gseabase@1.72.0 r-hdf5array@1.38.0 r-iranges@2.44.0 r-matrix@1.7-4 r-matrixgenerics@1.22.0 r-s4arrays@1.10.0 r-s4vectors@0.48.0 r-singlecellexperiment@1.32.0 r-sparsearray@1.10.2 r-sparsematrixstats@1.22.0 r-spatialexperiment@1.20.0 r-summarizedexperiment@1.40.0
Channel: guix
Location: gnu/packages/bioconductor.scm (gnu packages bioconductor)
Home page: https://github.com/rcastelo/GSVA
Licenses: GPL 2+
Synopsis: Gene Set Variation Analysis for microarray and RNA-seq data
Description:

Gene Set Variation Analysis (GSVA) is a non-parametric, unsupervised method for estimating variation of gene set enrichment through the samples of a expression data set. GSVA performs a change in coordinate systems, transforming the data from a gene by sample matrix to a gene-set by sample matrix, thereby allowing the evaluation of pathway enrichment for each sample. This new matrix of GSVA enrichment scores facilitates applying standard analytical methods like functional enrichment, survival analysis, clustering, CNV-pathway analysis or cross-tissue pathway analysis, in a pathway-centric manner.

r-vcfr 1.15.0
Dependencies: zlib@1.3.1
Propagated dependencies: r-ape@5.8-1 r-dplyr@1.1.4 r-magrittr@2.0.4 r-memuse@4.2-3 r-pinfsc50@1.3.0 r-rcpp@1.1.0 r-stringr@1.6.0 r-tibble@3.3.0 r-vegan@2.7-2 r-viridislite@0.4.2
Channel: guix
Location: gnu/packages/cran.scm (gnu packages cran)
Home page: https://github.com/knausb/vcfR
Licenses: GPL 3
Synopsis: Manipulate and visualize VCF data
Description:

This package facilitates easy manipulation of variant call format (VCF) data. Functions are provided to rapidly read from and write to VCF files. Once VCF data is read into R, a parser function extracts matrices of data. This information can then be used for quality control or other purposes. Additional functions provide visualization of genomic data. Once processing is complete data may be written to a VCF file. It also may be converted into other popular R objects. This package provides a link between VCF data and familiar R software.

Page: 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268
Total results: 30423