_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-dipw 0.1.0
Propagated dependencies: r-rmosek@1.3.5 r-matrix@1.7-3 r-glmnet@4.1-8
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://cran.r-project.org/package=dipw
Licenses: GPL 3
Synopsis: Debiased Inverse Propensity Score Weighting
Description:

Estimation of the average treatment effect when controlling for high-dimensional confounders using debiased inverse propensity score weighting (DIPW). DIPW relies on the propensity score following a sparse logistic regression model, but the regression curves are not required to be estimable. Despite this, our package also allows the users to estimate the regression curves and take the estimated curves as input to our methods. Details of the methodology can be found in Yuhao Wang and Rajen D. Shah (2020) "Debiased Inverse Propensity Score Weighting for Estimation of Average Treatment Effects with High-Dimensional Confounders" <arXiv:2011.08661>. The package relies on the optimisation software MOSEK <https://www.mosek.com/> which must be installed separately; see the documentation for Rmosek'.

r-meta 8.1-0
Propagated dependencies: r-xml2@1.3.8 r-tibble@3.2.1 r-stringr@1.5.1 r-scales@1.4.0 r-readr@2.1.5 r-purrr@1.0.4 r-metafor@4.8-0 r-metadat@1.4-0 r-magrittr@2.0.3 r-lme4@1.1-37 r-ggplot2@3.5.2 r-dplyr@1.1.4 r-compquadform@1.4.3
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=meta
Licenses: GPL 2+
Synopsis: General Package for Meta-Analysis
Description:

User-friendly general package providing standard methods for meta-analysis and supporting Schwarzer, Carpenter, and Rücker <DOI:10.1007/978-3-319-21416-0>, "Meta-Analysis with R" (2015): - common effect and random effects meta-analysis; - several plots (forest, funnel, Galbraith / radial, L'Abbe, Baujat, bubble); - three-level meta-analysis model; - generalised linear mixed model; - logistic regression with penalised likelihood for rare events; - Hartung-Knapp method for random effects model; - Kenward-Roger method for random effects model; - prediction interval; - statistical tests for funnel plot asymmetry; - trim-and-fill method to evaluate bias in meta-analysis; - meta-regression; - cumulative meta-analysis and leave-one-out meta-analysis; - import data from RevMan 5'; - produce forest plot summarising several (subgroup) meta-analyses.

r-picr 1.0.1
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://github.com/javenrflo/picR
Licenses: GPL 3+
Synopsis: Predictive Information Criteria for Model Selection
Description:

Computation of predictive information criteria (PIC) from select model object classes for model selection in predictive contexts. In contrast to the more widely used Akaike Information Criterion (AIC), which are derived under the assumption that target(s) of prediction (i.e. validation data) are independently and identically distributed to the fitting data, the PIC are derived under less restrictive assumptions and thus generalize AIC to the more practically relevant case of training/validation data heterogeneity. The methodology featured in this package is based on Flores (2021) <https://iro.uiowa.edu/esploro/outputs/doctoral/A-new-class-of-information-criteria/9984097169902771?institution=01IOWA_INST> "A new class of information criteria for improved prediction in the presence of training/validation data heterogeneity".

r-seer 1.1.8
Propagated dependencies: r-urca@1.3-4 r-tsfeatures@1.1.1 r-tibble@3.2.1 r-stringr@1.5.1 r-randomforest@4.7-1.2 r-purrr@1.0.4 r-magrittr@2.0.3 r-future@1.49.0 r-furrr@0.3.1 r-forectheta@3.0 r-forecast@8.24.0 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://thiyangt.github.io/seer/
Licenses: GPL 3
Synopsis: Feature-Based Forecast Model Selection
Description:

This package provides a novel meta-learning framework for forecast model selection using time series features. Many applications require a large number of time series to be forecast. Providing better forecasts for these time series is important in decision and policy making. We propose a classification framework which selects forecast models based on features calculated from the time series. We call this framework FFORMS (Feature-based FORecast Model Selection). FFORMS builds a mapping that relates the features of time series to the best forecast model using a random forest. seer package is the implementation of the FFORMS algorithm. For more details see our paper at <https://www.monash.edu/business/econometrics-and-business-statistics/research/publications/ebs/wp06-2018.pdf>.

r-carm 1.1.0
Propagated dependencies: r-mass@7.3-65 r-dplyr@1.1.4 r-arrangements@1.1.9
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=CARM
Licenses: GPL 2+
Synopsis: Covariate-Adjusted Adaptive Randomization via Mahalanobis-Distance
Description:

In randomized controlled trial (RCT), balancing covariate is often one of the most important concern. CARM package provides functions to balance the covariates and generate allocation sequence by covariate-adjusted Adaptive Randomization via Mahalanobis-distance (ARM) for RCT. About what ARM is and how it works please see Y. Qin, Y. Li, W. Ma, H. Yang, and F. Hu (2022). "Adaptive randomization via Mahalanobis distance" Statistica Sinica. <doi:10.5705/ss.202020.0440>. In addition, the package is also suitable for the randomization process of multi-arm trials. For details, please see Yang H, Qin Y, Wang F, et al. (2023). "Balancing covariates in multi-arm trials via adaptive randomization" Computational Statistics & Data Analysis.<doi:10.1016/j.csda.2022.107642>.

r-dams 0.3.0
Propagated dependencies: r-readxl@1.4.5 r-janitor@2.2.1 r-fauxpas@0.5.2 r-crul@1.5.0
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://github.com/jsta/dams
Licenses: GPL 2+
Synopsis: Dams in the United States from the National Inventory of Dams (NID)
Description:

The single largest source of dams in the United States is the National Inventory of Dams (NID) <http://nid.usace.army.mil> from the US Army Corps of Engineers. Entire data from the NID cannot be obtained all at once and NID's website limits extraction of more than a couple of thousand records at a time. Moreover, selected data from the NID's user interface cannot not be saved to a file. In order to make the analysis of this data easier, all the data from NID was extracted manually. Subsequently, the raw data was checked for potential errors and cleaned. This package provides sample cleaned data from the NID and provides functionality to access the entire cleaned NID data.

r-ipfr 1.0.2
Propagated dependencies: r-tidyr@1.3.1 r-mlr@2.19.2 r-magrittr@2.0.3 r-ggplot2@3.5.2 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://github.com/dkyleward/ipfr
Licenses: ASL 2.0
Synopsis: List Balancing for Reweighting and Population Synthesis
Description:

This package performs iterative proportional updating given a seed table and an arbitrary number of marginal distributions. This is commonly used in population synthesis, survey raking, matrix rebalancing, and other applications. For example, a household survey may be weighted to match the known distribution of households by size from the census. An origin/ destination trip matrix might be balanced to match traffic counts. The approach used by this package is based on a paper from Arizona State University (Ye, Xin, et. al. (2009) <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.537.723&rep=rep1&type=pdf>). Some enhancements have been made to their work including primary and secondary target balance/importance, general marginal agreement, and weight restriction.

r-mgss 1.2
Propagated dependencies: r-statmod@1.5.0 r-rcpp@1.0.14 r-matrix@1.7-3 r-combinat@0.0-8
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=mgss
Licenses: Expat
Synopsis: Matrix-Free Multigrid Preconditioner for Spline Smoothing
Description:

Data smoothing with penalized splines is a popular method and is well established for one- or two-dimensional covariates. The extension to multiple covariates is straightforward but suffers from exponentially increasing memory requirements and computational complexity. This toolbox provides a matrix-free implementation of a conjugate gradient (CG) method for the regularized least squares problem resulting from tensor product B-spline smoothing with multivariate and scattered data. It further provides matrix-free preconditioned versions of the CG-algorithm where the user can choose between a simpler diagonal preconditioner and an advanced geometric multigrid preconditioner. The main advantage is that all algorithms are performed matrix-free and therefore require only a small amount of memory. For further detail see Siebenborn & Wagner (2021).

r-milr 0.3.1
Propagated dependencies: r-rcppparallel@5.1.10 r-rcpparmadillo@14.4.2-1 r-rcpp@1.0.14 r-piper@0.6.1.3 r-numderiv@2016.8-1.1 r-glmnet@4.1-8
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/PingYangChen/milr
Licenses: Expat
Synopsis: Multiple-Instance Logistic Regression with LASSO Penalty
Description:

The multiple instance data set consists of many independent subjects (called bags) and each subject is composed of several components (called instances). The outcomes of such data set are binary or categorical responses, and, we can only observe the subject-level outcomes. For example, in manufacturing processes, a subject is labeled as "defective" if at least one of its own components is defective, and otherwise, is labeled as "non-defective". The milr package focuses on the predictive model for the multiple instance data set with binary outcomes and performs the maximum likelihood estimation with the Expectation-Maximization algorithm under the framework of logistic regression. Moreover, the LASSO penalty is attached to the likelihood function for simultaneous parameter estimation and variable selection.

r-moqa 2.0.0
Propagated dependencies: r-readr@2.1.5 r-psych@2.5.3 r-gplots@3.2.0
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MOQA
Licenses: AGPL 3
Synopsis: Basic Quality Data Assurance for Epidemiological Research
Description:

With the provision of several tools and templates the MOSAIC project (DFG-Grant Number HO 1937/2-1) supports the implementation of a central data management in epidemiological research projects. The MOQA package enables epidemiologists with none or low experience in R to generate basic data quality reports for a wide range of application scenarios. See <https://mosaic-greifswald.de/> for more information. Please read and cite the corresponding open access publication (using the former package-name) in METHODS OF INFORMATION IN MEDICINE by M. Bialke, H. Rau, T. Schwaneberg, R. Walk, T. Bahls and W. Hoffmann (2017) <doi:10.3414/ME16-01-0123>. <https://methods.schattauer.de/en/contents/most-recent-articles/issue/2483/issue/special/manuscript/27573/show.html>.

r-mdei 1.0
Propagated dependencies: r-splines2@0.5.4 r-rcpparmadillo@14.4.2-1 r-rcpp@1.0.14 r-ranger@0.17.0 r-mass@7.3-65
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MDEI
Licenses: GPL 2+
Synopsis: Implementing the Method of Direct Estimation and Inference
Description:

Causal and statistical inference on an arbitrary treatment effect curve requires care in both estimation and inference. This package, implements the Method of Direct Estimation and Inference as introduced in "Estimation and Inference on Nonlinear and Heterogeneous Effects" by Ratkovic and Tingley (2023) <doi:10.1086/723811>. The method takes an outcome, variable of theoretical interest (treatment), and set of variables and then returns a partial derivative (marginal effect) of the treatment variable at each point along with uncertainty intervals. The approach offers two advances. First, a split-sample approach is used as a guard against over-fitting. Second, the method uses a data-driven interval derived from conformal inference, rather than relying on a normality assumption on the error terms.

r-spm2 1.1.3
Propagated dependencies: r-spm@1.2.2 r-sp@2.2-0 r-randomforest@4.7-1.2 r-nlme@3.1-168 r-gstat@2.1-3 r-glmnet@4.1-8 r-gbm@2.2.2 r-fields@16.3.1 r-e1071@1.7-16
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=spm2
Licenses: GPL 2+
Synopsis: Spatial Predictive Modeling
Description:

An updated and extended version of spm package, by introducing some further novel functions for modern statistical methods (i.e., generalised linear models, glmnet, generalised least squares), thin plate splines, support vector machine, kriging methods (i.e., simple kriging, universal kriging, block kriging, kriging with an external drift), and novel hybrid methods (228 hybrids plus numerous variants) of modern statistical methods or machine learning methods with mathematical and/or univariate geostatistical methods for spatial predictive modelling. For each method, two functions are provided, with one function for assessing the predictive errors and accuracy of the method based on cross-validation, and the other for generating spatial predictions. It also contains a couple of functions for data preparation and predictive accuracy assessment.

r-fssf 0.1.1
Propagated dependencies: r-rcpparmadillo@14.4.2-1 r-rcpp@1.0.14
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://cran.r-project.org/package=FSSF
Licenses: GPL 2
Synopsis: Generate Fully-Sequential Space-Filling Designs Inside a Unit Hypercube
Description:

This package provides three methods proposed by Shang and Apley (2019) <doi:10.1080/00224065.2019.1705207> to generate fully-sequential space-filling designs inside a unit hypercube. A fully-sequential space-filling design means a sequence of nested designs (as the design size varies from one point up to some maximum number of points) with the design points added one at a time and such that the design at each size has good space-filling properties. Two methods target the minimum pairwise distance criterion and generate maximin designs, among which one method is more efficient when design size is large. One method targets the maximum hole size criterion and uses a heuristic to generate what is closer to a minimax design.

r-megb 0.1
Propagated dependencies: r-mass@7.3-65 r-latex2exp@0.9.6 r-gbm@2.2.2
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MEGB
Licenses: GPL 2
Synopsis: Gradient Boosting for Longitudinal Data
Description:

Gradient boosting is a powerful statistical learning method known for its ability to model complex relationships between predictors and outcomes while performing inherent variable selection. However, traditional gradient boosting methods lack flexibility in handling longitudinal data where within-subject correlations play a critical role. In this package, we propose a novel approach Mixed Effect Gradient Boosting ('MEGB'), designed specifically for high-dimensional longitudinal data. MEGB incorporates a flexible semi-parametric model that embeds random effects within the gradient boosting framework, allowing it to account for within-individual covariance over time. Additionally, the method efficiently handles scenarios where the number of predictors greatly exceeds the number of observations (p>>n) making it particularly suitable for genomics data and other large-scale biomedical studies.

r-mpge 1.0.0
Propagated dependencies: r-purrr@1.0.4 r-car@3.1-3
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/ArunabhaCodes/MPGE
Licenses: GPL 3
Synopsis: Two-Step Approach to Testing Overall Effect of Gene-Environment Interaction for Multiple Phenotypes
Description:

Interaction between a genetic variant (e.g., a single nucleotide polymorphism) and an environmental variable (e.g., physical activity) can have a shared effect on multiple phenotypes (e.g., blood lipids). We implement a two-step method to test for an overall interaction effect on multiple phenotypes. In first step, the method tests for an overall marginal genetic association between the genetic variant and the multivariate phenotype. The genetic variants which show an evidence of marginal overall genetic effect in the first step are prioritized while testing for an overall gene-environment interaction effect in the second step. Methodology is available from: A Majumdar, KS Burch, S Sankararaman, B Pasaniuc, WJ Gauderman, JS Witte (2020) <doi:10.1101/2020.07.06.190256>.

r-itos 1.0.3
Propagated dependencies: r-xtable@1.8-4 r-rcbalance@1.8.8 r-mass@7.3-65 r-biasedurn@2.0.12
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://cran.r-project.org/package=iTOS
Licenses: GPL 2
Synopsis: Methods and Examples from Introduction to the Theory of Observational Studies
Description:

Supplements for a book, "iTOS" = "Introduction to the Theory of Observational Studies." Data sets are aHDL from Rosenbaum (2023a) <doi:10.1111/biom.13558> and bingeM from Rosenbaum (2023b) <doi:10.1111/biom.13921>. The function makematch() uses two-criteria matching from Zhang et al. (2023) <doi:10.1080/01621459.2021.1981337> to create the matched data bingeM from binge'. The makematch() function also implements optimal matching (Rosenbaum (1989) <doi:10.2307/2290079>) and matching with fine or near-fine balance (Rosenbaum et al. (2007) <doi:10.1198/016214506000001059> and Yang et al (2012) <doi:10.1111/j.1541-0420.2011.01691.x>). The book makes use of two other R packages, weightedRank and tightenBlock'.

r-mlrv 0.1.2
Propagated dependencies: r-xtable@1.8-4 r-rcpparmadillo@14.4.2-1 r-rcpp@1.0.14 r-numderiv@2016.8-1.1 r-mathjaxr@1.8-0 r-magrittr@2.0.3 r-foreach@1.5.2 r-doparallel@1.0.17
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=mlrv
Licenses: Expat
Synopsis: Long-Run Variance Estimation in Time Series Regression
Description:

Plug-in and difference-based long-run covariance matrix estimation for time series regression. Two applications of hypothesis testing are also provided. The first one is for testing for structural stability in coefficient functions. The second one is aimed at detecting long memory in time series regression. Lujia Bai and Weichi Wu (2024)<doi:10.3150/23-BEJ1680> Zhou Zhou and Wei Biao Wu(2010)<doi:10.1111/j.1467-9868.2010.00743.x> Jianqing Fan and Wenyang Zhang<doi:10.1214/aos/1017939139> Lujia Bai and Weichi Wu(2024)<doi:10.1093/biomet/asae013> Dimitris N. Politis, Joseph P. Romano, Michael Wolf(1999)<doi:10.1007/978-1-4612-1554-7> Weichi Wu and Zhou Zhou(2018)<doi:10.1214/17-AOS1582>.

r-ann2 2.3.4
Propagated dependencies: r-viridislite@0.4.2 r-testthat@3.2.3 r-reshape2@1.4.4 r-rcpparmadillo@14.4.2-1 r-rcpp@1.0.14 r-ggplot2@3.5.2
Channel: guix-cran
Location: guix-cran/packages/a.scm (guix-cran packages a)
Home page: https://github.com/bflammers/ANN2
Licenses: GPL 3+ FSDG-compatible
Synopsis: Artificial Neural Networks for Anomaly Detection
Description:

Training of neural networks for classification and regression tasks using mini-batch gradient descent. Special features include a function for training autoencoders, which can be used to detect anomalies, and some related plotting functions. Multiple activation functions are supported, including tanh, relu, step and ramp. For the use of the step and ramp activation functions in detecting anomalies using autoencoders, see Hawkins et al. (2002) <doi:10.1007/3-540-46145-0_17>. Furthermore, several loss functions are supported, including robust ones such as Huber and pseudo-Huber loss, as well as L1 and L2 regularization. The possible options for optimization algorithms are RMSprop, Adam and SGD with momentum. The package contains a vectorized C++ implementation that facilitates fast training through mini-batch learning.

r-fbar 0.6.0
Propagated dependencies: r-tidyr@1.3.1 r-tibble@3.2.1 r-stringr@1.5.1 r-roi-plugin-ecos@1.0-2 r-roi@1.0-1 r-rlang@1.1.6 r-purrr@1.0.4 r-matrix@1.7-3 r-magrittr@2.0.3 r-dplyr@1.1.4 r-assertthat@0.2.1
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: http://maxconway.github.io/fbar/
Licenses: GPL 3
Synopsis: An Extensible Approach to Flux Balance Analysis
Description:

This package provides a toolkit for Flux Balance Analysis and related metabolic modeling techniques. Functions are provided for: parsing models in tabular format, converting parsed metabolic models to input formats for common linear programming solvers, and evaluating and applying gene-protein-reaction mappings. In addition, there are wrappers to parse a model, select a solver, find the metabolic fluxes, and return the results applied to the original model. Compared to other packages in this field, this package puts a much heavier focus on providing reusable components that can be used in the design of new implementation of new techniques, in particular those that involve large parameter sweeps. For a background on the theory, see What is Flux Balance Analysis <doi:10.1038/nbt.1614>.

r-hctr 0.1.1
Propagated dependencies: r-rdpack@2.6.4 r-ncvreg@3.15.0 r-mass@7.3-65 r-harmonicmeanp@3.0.1 r-glmnet@4.1-8
Channel: guix-cran
Location: guix-cran/packages/h.scm (guix-cran packages h)
Home page: https://cran.r-project.org/package=HCTR
Licenses: GPL 2
Synopsis: Higher Criticism Tuned Regression
Description:

This package provides a novel searching scheme for tuning parameter in high-dimensional penalized regression. We propose a new estimate of the regularization parameter based on an estimated lower bound of the proportion of false null hypotheses (Meinshausen and Rice (2006) <doi:10.1214/009053605000000741>). The bound is estimated by applying the empirical null distribution of the higher criticism statistic, a second-level significance testing, which is constructed by dependent p-values from a multi-split regression and aggregation method (Jeng, Zhang and Tzeng (2019) <doi:10.1080/01621459.2018.1518236>). An estimate of tuning parameter in penalized regression is decided corresponding to the lower bound of the proportion of false null hypotheses. Different penalized regression methods are provided in the multi-split algorithm.

r-mmrm 0.3.15
Propagated dependencies: r-tmb@1.9.17 r-tibble@3.2.1 r-testthat@3.2.3 r-stringr@1.5.1 r-rdpack@2.6.4 r-rcppeigen@0.3.4.0.2 r-rcpp@1.0.14 r-nlme@3.1-168 r-matrix@1.7-3 r-lifecycle@1.0.4 r-generics@0.1.4 r-checkmate@2.3.2
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://openpharma.github.io/mmrm/
Licenses: ASL 2.0
Synopsis: Mixed Models for Repeated Measures
Description:

Mixed models for repeated measures (MMRM) are a popular choice for analyzing longitudinal continuous outcomes in randomized clinical trials and beyond; see Cnaan, Laird and Slasor (1997) <doi:10.1002/(SICI)1097-0258(19971030)16:20%3C2349::AID-SIM667%3E3.0.CO;2-E> for a tutorial and Mallinckrodt, Lane, Schnell, Peng and Mancuso (2008) <doi:10.1177/009286150804200402> for a review. This package implements MMRM based on the marginal linear model without random effects using Template Model Builder ('TMB') which enables fast and robust model fitting. Users can specify a variety of covariance matrices, weight observations, fit models with restricted or standard maximum likelihood inference, perform hypothesis testing with Satterthwaite or Kenward-Roger adjustment, and extract least square means estimates by using emmeans'.

r-mgmm 1.0.1.1
Propagated dependencies: r-rcpparmadillo@14.4.2-1 r-rcpp@1.0.14 r-plyr@1.8.9 r-mvnfast@0.2.8 r-cluster@2.1.8.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MGMM
Licenses: GPL 3
Synopsis: Missingness Aware Gaussian Mixture Models
Description:

Parameter estimation and classification for Gaussian Mixture Models (GMMs) in the presence of missing data. This package complements existing implementations by allowing for both missing elements in the input vectors and full (as opposed to strictly diagonal) covariance matrices. Estimation is performed using an expectation conditional maximization algorithm that accounts for missingness of both the cluster assignments and the vector components. The output includes the marginal cluster membership probabilities; the mean and covariance of each cluster; the posterior probabilities of cluster membership; and a completed version of the input data, with missing values imputed to their posterior expectations. For additional details, please see McCaw ZR, Julienne H, Aschard H. "Fitting Gaussian mixture models on incomplete data." <doi:10.1186/s12859-022-04740-9>.

r-piar 0.8.2
Propagated dependencies: r-matrix@1.7-3 r-gpindex@0.6.3
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://marberts.github.io/piar/
Licenses: Expat
Synopsis: Price Index Aggregation
Description:

Most price indexes are made with a two-step procedure, where period-over-period elemental indexes are first calculated for a collection of elemental aggregates at each point in time, and then aggregated according to a price index aggregation structure. These indexes can then be chained together to form a time series that gives the evolution of prices with respect to a fixed base period. This package contains a collection of functions that revolve around this work flow, making it easy to build standard price indexes, and implement the methods described by Balk (2008, <doi:10.1017/CBO9780511720758>), von der Lippe (2007, <doi:10.3726/978-3-653-01120-3>), and the CPI manual (2020, <doi:10.5089/9781484354841.069>) for bilateral price indexes.

r-pcds 0.1.8
Propagated dependencies: r-rdpack@2.6.4 r-plotrix@3.8-4 r-plot3d@1.4.1 r-interp@1.1-6 r-gmoip@1.5.5 r-combinat@0.0-8
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://cran.r-project.org/package=pcds
Licenses: GPL 2
Synopsis: Proximity Catch Digraphs and Their Applications
Description:

This package contains the functions for construction and visualization of various families of the proximity catch digraphs (PCDs), see (Ceyhan (2005) ISBN:978-3-639-19063-2), for computing the graph invariants for testing the patterns of segregation and association against complete spatial randomness (CSR) or uniformity in one, two and three dimensional cases. The package also has tools for generating points from these spatial patterns. The graph invariants used in testing spatial point data are the domination number (Ceyhan (2011) <doi:10.1080/03610921003597211>) and arc density (Ceyhan et al. (2006) <doi:10.1016/j.csda.2005.03.002>; Ceyhan et al. (2007) <doi:10.1002/cjs.5550350106>). The PCD families considered are Arc-Slice PCDs, Proportional-Edge PCDs, and Central Similarity PCDs.

Page: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407
Total results: 33752