The Readline library provides a set of functions for use by applications that allow users to edit command lines as they are typed in. Both Emacs and vi editing modes are available. The Readline library includes additional functions to maintain a list of previously-entered command lines, to recall and perhaps reedit those lines, and perform csh-like history expansion on previous commands.
`orthogene` is an R package for easy mapping of orthologous genes across hundreds of species. It pulls up-to-date gene ortholog mappings across **700+ organisms**. It also provides various utility functions to aggregate/expand common objects (e.g. data.frames, gene expression matrices, lists) using **1:1**, **many:1**, **1:many** or **many:many** gene mappings, both within- and between-species.
This package provides functions to work with date-times and time-spans: fast and user friendly parsing of date-time data, extraction and updating of components of a date-time (years, months, days, hours, minutes, and seconds), algebraic manipulation on date-time and time-span objects. The lubridate package has a consistent and memorable syntax that makes working with dates easy and fun.
This package provides functions to visualise webs and calculate a series of indices commonly used to describe pattern in (ecological) webs. It focuses on webs consisting of only two levels (bipartite), e.g. pollination webs or predator-prey-webs. Visualisation is important to get an idea of what we are actually looking at, while the indices summarise different aspects of the web's topology.
This package provides tools for fitting possibly high dimensional penalized regression models. The penalty structure can be any combination of an L1 penalty (lasso and fused lasso), an L2 penalty (ridge) and a positivity constraint on the regression coefficients. The supported regression models are linear, logistic and Poisson regression and the Cox Proportional Hazards model. Cross-validation routines allow optimization of the tuning parameters.
This package provides tools to compute and represent gene set enrichment or depletion from your data based on pre-saved maps from the Atlas of Cancer Signalling Networks (ACSN) or user imported maps. The gene set enrichment can be run with hypergeometric test or Fisher exact test, and can use multiple corrections. Visualization of data can be done either by barplots or heatmaps.
The rcs package utilizes the inclusion of RCS supplied data in LaTeX documents. In particular, you can easily access values of every RCS field in your document put the checkin date on the titlepage or put RCS fields in a footline. You can also typeset revision logs. You can also configure the rcs package easily to do special things for any keyword.
This is a slightly modified version of the standalone Rmath library from R, built to be used with the Rmath.jl Julia package. The main difference is that it is built to allow defining custom random number generating functions via C function pointers (see include/callback.h). When using the library, these should be defined before calling any of the random functions.
bioassayR is a computational tool that enables simultaneous analysis of thousands of bioassay experiments performed over a diverse set of compounds and biological targets. Unique features include support for large-scale cross-target analyses of both public and custom bioassays, generation of high throughput screening fingerprints (HTSFPs), and an optional preloaded database that provides access to a substantial portion of publicly available bioactivity data.
This package provides tools to convert plot function calls (using expression or formula) to grob or ggplot objects that are compatible with the grid and ggplot2 environment. With this package, we are able to e.g. use cowplot to align plots produced by base graphics, grid, lattice, vcd etc. by converting them to ggplot objects.
This package provides a graphical user interface for interactive Markov chain Monte Carlo (MCMC) diagnostics and plots and tables helpful for analyzing a posterior sample. The interface is powered by the Shiny web application framework and works with the output of MCMC programs written in any programming language (and has extended functionality for Stan models fit using the rstan and rstanarm packages).
This package provides a minimal, unifying API for scripts and packages to report progress updates from anywhere including when using parallel processing. The package is designed such that the developer can to focus on what progress should be reported on without having to worry about how to present it. The end user has full control of how, where, and when to render these progress updates.
ExperimentHubData package for the mulea comprehensive overrepresentation and functional enrichment analyser R package. Here we provide ontologies (gene sets) in a data.frame for 27 different organisms, ranging from Escherichia coli to human, all acquired from publicly available data sources. Each ontology is provided with multiple gene and protein identifiers. Please see the NEWS file for a list of changes in each version.
Phantasus is a web-application for visual and interactive gene expression analysis. Phantasus is based on Morpheus – a web-based software for heatmap visualisation and analysis, which was integrated with an R environment via OpenCPU API. Aside from basic visualization and filtering methods, R-based methods such as k-means clustering, principal component analysis or differential expression analysis with limma package are supported.
MethylKit is an R package for DNA methylation analysis and annotation from high-throughput bisulfite sequencing. The package is designed to deal with sequencing data from Reduced representation bisulfite sequencing (RRBS) and its variants, but also target-capture methods and whole genome bisulfite sequencing. It also has functions to analyze base-pair resolution 5hmC data from experimental protocols such as oxBS-Seq and TAB-Seq.
Manage the life cycle of your exported functions with shared conventions, documentation badges, and non-invasive deprecation warnings. The lifecycle package defines four development stages (experimental, maturing, stable, and questioning) and three deprecation stages (soft-deprecated, deprecated, and defunct). It makes it easy to insert badges corresponding to these stages in your documentation. Usage of deprecated functions are signalled with increasing levels of non-invasive verbosity.
This package provides procedures for model-based trees for subgroup analyses in clinical trials and model-based forests for the estimation and prediction of personalised treatment effects. Currently partitioning of linear models, lm(), generalised linear models, glm(), and Weibull models, survreg(), are supported. Advanced plotting functionality is supported for the trees and a test for parameter heterogeneity is provided for the personalised models.
Rodi is a dependency injection framework for Python applications.
Its features include
Type resolution by signature types annotations.
Type resolution by class annotations.
Type resolution by names and aliases.
Build graph of objects without the need for source code changes.
Minimum overhead to obtain services, once the objects graph is built.
Support for singleton, transient, and scoped services.
scTreeViz provides classes to support interactive data aggregation and visualization of single cell RNA-seq datasets with hierarchies for e.g. cell clusters at different resolutions. The `TreeIndex` class provides methods to manage hierarchy and split the tree at a given resolution or across resolutions. The `TreeViz` class extends `SummarizedExperiment` and can performs quick aggregations on the count matrix defined by clusters.
In order to assess the quality of a set of predicted genes for a genome, evidence must first be mapped to that genome. Next, each gene must be categorized based on how strong the evidence is for or against that gene. The AssessORF package provides the functions and class structures necessary for accomplishing those tasks, using proteomics hits and evolutionarily conserved start codons as the forms of evidence.
This package is meant to ease the creation of time-to-event (i.e. survival) endpoint figures. The modular functions create figures ready for publication. Each of the functions that add to or modify the figure are written as proper ggplot2 geoms or stat methods, allowing the functions from this package to be combined with any function or customization from ggplot2 and other ggplot2 extension packages.
This package implements a Raft algorithm logic (no I/O and no system calls). On top of that, various drivers are provided that implement actual network communication and persistent data storage.
The core part of the library is designed to work well with asynchronous or non-blocking I/O engines (such as libuv and io_uring), although it can be used in threaded or blocking contexts as well.
Pqsfinder detects DNA and RNA sequence patterns that are likely to fold into an intramolecular G-quadruplex (G4). Unlike many other approaches, pqsfinder is able to detect G4s folded from imperfect G-runs containing bulges or mismatches or G4s having long loops. Pqsfinder also assigns an integer score to each hit that was fitted on G4 sequencing data and corresponds to expected stability of the folded G4.
This package implements an R interface to the Leiden algorithm, an iterative community detection algorithm on networks. The algorithm is designed to converge to a partition in which all subsets of all communities are locally optimally assigned, yielding communities guaranteed to be connected. The implementation proves to be fast, scales well, and can be run on graphs of millions of nodes (as long as they can fit in memory).