_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-gomp 1.0
Propagated dependencies: r-survival@3.8-3 r-rfast2@0.1.5.5 r-rfast@2.1.5.2 r-quantreg@6.1 r-ordinal@2023.12-4.1 r-nnet@7.3-20 r-mass@7.3-65 r-hmisc@5.2-4 r-foreach@1.5.2 r-doparallel@1.0.17
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=gomp
Licenses: GPL 2+
Build system: r
Synopsis: The gamma-OMP Feature Selection Algorithm
Description:

The gamma-Orthogonal Matching Pursuit (gamma-OMP) is a recently suggested modification of the OMP feature selection algorithm for a wide range of response variables. The package offers many alternative regression models, such linear, robust, survival, multivariate etc., including k-fold cross-validation. References: Tsagris M., Papadovasilakis Z., Lakiotaki K. and Tsamardinos I. (2018). "Efficient feature selection on gene expression data: Which algorithm to use?" BioRxiv. <doi:10.1101/431734>. Tsagris M., Papadovasilakis Z., Lakiotaki K. and Tsamardinos I. (2022). "The gamma-OMP algorithm for feature selection with application to gene expression data". IEEE/ACM Transactions on Computational Biology and Bioinformatics 19(2): 1214--1224. <doi:10.1109/TCBB.2020.3029952>.

r-imix 1.1.5
Propagated dependencies: r-mvtnorm@1.3-3 r-mixtools@2.0.0.1 r-mclust@6.1.2 r-mass@7.3-65 r-ggplot2@4.0.1 r-crayon@1.5.3
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://github.com/ziqiaow/IMIX
Licenses: GPL 2
Build system: r
Synopsis: Gaussian Mixture Model for Multi-Omics Data Integration
Description:

This package provides a multivariate Gaussian mixture model framework to integrate multiple types of genomic data and allow modeling of inter-data-type correlations for association analysis. IMIX can be implemented to test whether a disease is associated with genes in multiple genomic data types, such as DNA methylation, copy number variation, gene expression, etc. It can also study the integration of multiple pathways. IMIX uses the summary statistics of association test outputs and conduct integration analysis for two or three types of genomics data. IMIX features statistically-principled model selection, global FDR control and computational efficiency. Details are described in Ziqiao Wang and Peng Wei (2020) <doi:10.1093/bioinformatics/btaa1001>.

r-pchc 1.3
Propagated dependencies: r-robustbase@0.99-6 r-rfast2@0.1.5.5 r-rfast@2.1.5.2 r-foreach@1.5.2 r-doparallel@1.0.17 r-dcov@0.1.1 r-bnlearn@5.1 r-bigstatsr@1.6.2
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://cran.r-project.org/package=pchc
Licenses: GPL 2+
Build system: r
Synopsis: Bayesian Network Learning with the PCHC and Related Algorithms
Description:

Bayesian network learning using the PCHC, FEDHC, MMHC and variants of these algorithms. PCHC stands for PC Hill-Climbing, a new hybrid algorithm that uses PC to construct the skeleton of the BN and then applies the Hill-Climbing greedy search. More algorithms and variants have been added, such as MMHC, FEDHC, and the Tabu search variants, PCTABU, MMTABU and FEDTABU. The relevant papers are: a) Tsagris M. (2021). "A new scalable Bayesian network learning algorithm with applications to economics". Computational Economics, 57(1): 341-367. <doi:10.1007/s10614-020-10065-7>. b) Tsagris M. (2022). "The FEDHC Bayesian Network Learning Algorithm". Mathematics 2022, 10(15): 2604. <doi:10.3390/math10152604>.

r-tpxg 1.0
Propagated dependencies: r-rfast2@0.1.5.5
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://cran.r-project.org/package=TPXG
Licenses: GPL 2+
Build system: r
Synopsis: Two Parameter Xgamma & Poisson Xgamma: Regression & Distribution Functions
Description:

The two-parameter Xgamma and Poisson Xgamma distributions are analyzed, covering standard distribution and regression functions, maximum likelihood estimation, quantile functions, probability density and mass functions, cumulative distribution functions, and random number generation. References include: "Sen, S., Chandra, N. and Maiti, S. S. (2018). On properties and applications of a two-parameter XGamma distribution. Journal of Statistical Theory and Applications, 17(4): 674--685. <doi:10.2991/jsta.2018.17.4.9>." "Wani, M. A., Ahmad, P. B., Para, B. A. and Elah, N. (2023). A new regression model for count data with applications to health care data. International Journal of Data Science and Analytics. <doi:10.1007/s41060-023-00453-1>.".

r-ddct 1.66.0
Propagated dependencies: r-xtable@1.8-4 r-rcolorbrewer@1.1-3 r-lattice@0.22-7 r-biocgenerics@0.56.0 r-biobase@2.70.0
Channel: guix-bioc
Location: guix-bioc/packages/d.scm (guix-bioc packages d)
Home page: https://bioconductor.org/packages/ddCt
Licenses: LGPL 3
Build system: r
Synopsis: The ddCt Algorithm for the Analysis of Quantitative Real-Time PCR (qRT-PCR)
Description:

The Delta-Delta-Ct (ddCt) Algorithm is an approximation method to determine relative gene expression with quantitative real-time PCR (qRT-PCR) experiments. Compared to other approaches, it requires no standard curve for each primer-target pair, therefore reducing the working load and yet returning accurate enough results as long as the assumptions of the amplification efficiency hold. The ddCt package implements a pipeline to collect, analyse and visualize qRT-PCR results, for example those from TaqMan SDM software, mainly using the ddCt method. The pipeline can be either invoked by a script in command-line or through the API consisting of S4-Classes, methods and functions.

r-fsia 1.1.1
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://cran.r-project.org/package=fsia
Licenses: GPL 3
Build system: r
Synopsis: Import and Analysis of OMR Data from FormScanner
Description:

Import data of tests and questionnaires from FormScanner. FormScanner is an open source software that converts scanned images to data using optical mark recognition (OMR) and it can be downloaded from <http://sourceforge.net/projects/formscanner/>. The spreadsheet file created by FormScanner is imported in a convenient format to perform the analyses provided by the package. These analyses include the conversion of multiple responses to binary (correct/incorrect) data, the computation of the number of corrected responses for each subject or item, scoring using weights,the computation and the graphical representation of the frequencies of the responses to each item and the report of the responses of a few subjects.

r-gmac 3.2
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=GMAC
Licenses: GPL 2+ GPL 3+
Build system: r
Synopsis: Genomic Mediation Analysis with Adaptive Confounding Adjustment
Description:

This package performs genomic mediation analysis with adaptive confounding adjustment (GMAC) proposed by Yang et al. (2017) <doi:10.1101/gr.216754.116>. It implements large scale mediation analysis and adaptively selects potential confounding variables to adjust for each mediation test from a pool of candidate confounders. The package is tailored for but not limited to genomic mediation analysis (e.g., cis-gene mediating trans-gene regulation pattern where an eQTL, its cis-linking gene transcript, and its trans-gene transcript play the roles as treatment, mediator and the outcome, respectively), restricting to scenarios with the presence of cis-association (i.e., treatment-mediator association) and random eQTL (i.e., treatment).

r-krmm 1.0
Propagated dependencies: r-robustbase@0.99-6 r-mass@7.3-65 r-kernlab@0.9-33 r-cvtools@0.3.3
Channel: guix-cran
Location: guix-cran/packages/k.scm (guix-cran packages k)
Home page: https://cran.r-project.org/package=KRMM
Licenses: GPL 2 GPL 3
Build system: r
Synopsis: Kernel Ridge Mixed Model
Description:

Solves kernel ridge regression, within the the mixed model framework, for the linear, polynomial, Gaussian, Laplacian and ANOVA kernels. The model components (i.e. fixed and random effects) and variance parameters are estimated using the expectation-maximization (EM) algorithm. All the estimated components and parameters, e.g. BLUP of dual variables and BLUP of random predictor effects for the linear kernel (also known as RR-BLUP), are available. The kernel ridge mixed model (KRMM) is described in Jacquin L, Cao T-V and Ahmadi N (2016) A Unified and Comprehensible View of Parametric and Kernel Methods for Genomic Prediction with Application to Rice. Front. Genet. 7:145. <doi:10.3389/fgene.2016.00145>.

r-kfda 1.0.0
Propagated dependencies: r-mass@7.3-65 r-kernlab@0.9-33
Channel: guix-cran
Location: guix-cran/packages/k.scm (guix-cran packages k)
Home page: https://github.com/ainsuotain/kfda
Licenses: GPL 3
Build system: r
Synopsis: Kernel Fisher Discriminant Analysis
Description:

Kernel Fisher Discriminant Analysis (KFDA) is performed using Kernel Principal Component Analysis (KPCA) and Fisher Discriminant Analysis (FDA). There are some similar packages. First, lfda is a package that performs Local Fisher Discriminant Analysis (LFDA) and performs other functions. In particular, lfda seems to be impossible to test because it needs the label information of the data in the function argument. Also, the ks package has a limited dimension, which makes it difficult to analyze properly. This package is a simple and practical package for KFDA based on the paper of Yang, J., Jin, Z., Yang, J. Y., Zhang, D., and Frangi, A. F. (2004) <DOI:10.1016/j.patcog.2003.10.015>.

r-sfar 1.0.1
Propagated dependencies: r-ucminf@1.2.2 r-trustoptim@0.8.7.4 r-texreg@1.39.5 r-sandwich@3.1-1 r-randtoolbox@2.0.5 r-qrng@0.0-11 r-plm@2.6-7 r-nleqslv@3.3.5 r-mnorm@1.2.2 r-maxlik@1.5-2.1 r-marqlevalg@2.0.8 r-formula@1.2-5 r-fastghquad@1.0.1 r-cubature@2.1.4-1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/hdakpo/sfaR
Licenses: GPL 3+
Build system: r
Synopsis: Stochastic Frontier Analysis Routines
Description:

Maximum likelihood estimation for stochastic frontier analysis (SFA) of production (profit) and cost functions. The package includes the basic stochastic frontier for cross-sectional or pooled data with several distributions for the one-sided error term (i.e., Rayleigh, gamma, Weibull, lognormal, uniform, generalized exponential and truncated skewed Laplace), the latent class stochastic frontier model (LCM) as described in Dakpo et al. (2021) <doi:10.1111/1477-9552.12422>, for cross-sectional and pooled data, and the sample selection model as described in Greene (2010) <doi:10.1007/s11123-009-0159-1>, and applied in Dakpo et al. (2021) <doi:10.1111/agec.12683>. Several possibilities in terms of optimization algorithms are proposed.

r-lagp 1.5-9
Propagated dependencies: r-tgp@2.4-23
Channel: guix-cran
Location: guix-cran/packages/l.scm (guix-cran packages l)
Home page: https://bobby.gramacy.com/r_packages/laGP/
Licenses: LGPL 2.0+
Build system: r
Synopsis: Local Approximate Gaussian Process Regression
Description:

This package performs approximate GP regression for large computer experiments and spatial datasets. The approximation is based on finding small local designs for prediction (independently) at particular inputs. OpenMP and SNOW parallelization are supported for prediction over a vast out-of-sample testing set; GPU acceleration is also supported for an important subroutine. OpenMP and GPU features may require special compilation. An interface to lower-level (full) GP inference and prediction is provided. Wrapper routines for blackbox optimization under mixed equality and inequality constraints via an augmented Lagrangian scheme, and for large scale computer model calibration, are also provided. For details and tutorial, see Gramacy (2016 <doi:10.18637/jss.v072.i01>.

r-msma 3.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=msma
Licenses: GPL 2+
Build system: r
Synopsis: Multiblock Sparse Multivariable Analysis
Description:

Several functions can be used to analyze multiblock multivariable data. If the input is a single matrix, then principal components analysis (PCA) is implemented. If the input is a list of matrices, then multiblock PCA is implemented. If the input is two matrices, for exploratory and objective variables, then partial least squares (PLS) analysis is implemented. If the input is two lists of matrices, for exploratory and objective variables, then multiblock PLS analysis is implemented. Additionally, if an extra outcome variable is specified, then a supervised version of the methods above is implemented. For each method, sparse modeling is also incorporated. Functions for selecting the number of components and regularized parameters are also provided.

r-sapo 0.8.0
Dependencies: proj@9.3.1 geos@3.12.1 gdal@3.8.2
Propagated dependencies: r-sf@1.0-23
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/lcgodoy/sapo/
Licenses: GPL 3+
Build system: r
Synopsis: Spatial Association of Different Types of Polygon
Description:

In ecology, spatial data is often represented using polygons. These polygons can represent a variety of spatial entities, such as ecological patches, animal home ranges, or gaps in the forest canopy. Researchers often need to determine if two spatial processes, represented by these polygons, are independent of each other. For instance, they might want to test if the home range of a particular animal species is influenced by the presence of a certain type of vegetation. To address this, Godoy et al. (2022) (<doi:10.1016/j.spasta.2022.100695>) developed conditional Monte Carlo tests. These tests are designed to assess spatial independence while taking into account the shape and size of the polygons.

r-spsp 0.2.0
Propagated dependencies: r-rcpp@1.1.0 r-ncvreg@3.16.0 r-matrix@1.7-4 r-lars@1.3 r-glmnet@4.1-10
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://xiaorui.site/SPSP/
Licenses: GPL 2+
Build system: r
Synopsis: Selection by Partitioning the Solution Paths
Description:

An implementation of the feature Selection procedure by Partitioning the entire Solution Paths (namely SPSP) to identify the relevant features rather than using a single tuning parameter. By utilizing the entire solution paths, this procedure can obtain better selection accuracy than the commonly used approach of selecting only one tuning parameter based on existing criteria, cross-validation (CV), generalized CV, AIC, BIC, and extended BIC (Liu, Y., & Wang, P. (2018) <doi:10.1214/18-EJS1434>). It is more stable and accurate (low false positive and false negative rates) than other variable selection approaches. In addition, it can be flexibly coupled with the solution paths of Lasso, adaptive Lasso, ridge regression, and other penalized estimators.

r-rmda 1.6
Propagated dependencies: r-reshape@0.8.10 r-pander@0.6.6 r-mass@7.3-65 r-caret@7.0-1
Channel: guix-cran
Location: guix-cran/packages/r.scm (guix-cran packages r)
Home page: http://mdbrown.github.io/rmda/
Licenses: GPL 2
Build system: r
Synopsis: Risk Model Decision Analysis
Description:

This package provides tools to evaluate the value of using a risk prediction instrument to decide treatment or intervention (versus no treatment or intervention). Given one or more risk prediction instruments (risk models) that estimate the probability of a binary outcome, rmda provides functions to estimate and display decision curves and other figures that help assess the population impact of using a risk model for clinical decision making. Here, "population" refers to the relevant patient population. Decision curves display estimates of the (standardized) net benefit over a range of probability thresholds used to categorize observations as high risk'. The curves help evaluate a treatment policy that recommends treatment for patients who are estimated to be high risk by comparing the population impact of a risk-based policy to "treat all" and "treat none" intervention policies. Curves can be estimated using data from a prospective cohort. In addition, rmda can estimate decision curves using data from a case-control study if an estimate of the population outcome prevalence is available. Version 1.4 of the package provides an alternative framing of the decision problem for situations where treatment is the standard-of-care and a risk model might be used to recommend that low-risk patients (i.e., patients below some risk threshold) opt out of treatment. Confidence intervals calculated using the bootstrap can be computed and displayed. A wrapper function to calculate cross-validated curves using k-fold cross-validation is also provided.

r-poma 1.20.0
Propagated dependencies: r-vegan@2.7-2 r-uwot@0.2.4 r-tidyr@1.3.1 r-tibble@3.3.0 r-sva@3.58.0 r-summarizedexperiment@1.40.0 r-rlang@1.1.6 r-rankprod@3.36.0 r-randomforest@4.7-1.2 r-purrr@1.2.0 r-multcomp@1.4-29 r-msigdbr@25.1.1 r-mixomics@6.34.0 r-mass@7.3-65 r-magrittr@2.0.4 r-lme4@1.1-37 r-limma@3.66.0 r-janitor@2.2.1 r-impute@1.84.0 r-glmnet@4.1-10 r-ggrepel@0.9.6 r-ggplot2@4.0.1 r-ggcorrplot@0.1.4.1 r-fsa@0.10.0 r-fgsea@1.36.0 r-dplyr@1.1.4 r-deseq2@1.50.2 r-dbscan@1.2.3 r-complexheatmap@2.26.0 r-caret@7.0-1 r-broom@1.0.10
Channel: guix-bioc
Location: guix-bioc/packages/p.scm (guix-bioc packages p)
Home page: https://github.com/pcastellanoescuder/POMA
Licenses: GPL 3
Build system: r
Synopsis: Tools for Omics Data Analysis
Description:

The POMA package offers a comprehensive toolkit designed for omics data analysis, streamlining the process from initial visualization to final statistical analysis. Its primary goal is to simplify and unify the various steps involved in omics data processing, making it more accessible and manageable within a single, intuitive R package. Emphasizing on reproducibility and user-friendliness, POMA leverages the standardized SummarizedExperiment class from Bioconductor, ensuring seamless integration and compatibility with a wide array of Bioconductor tools. This approach guarantees maximum flexibility and replicability, making POMA an essential asset for researchers handling omics datasets. See https://github.com/pcastellanoescuder/POMAShiny. Paper: Castellano-Escuder et al. (2021) <doi:10.1371/journal.pcbi.1009148> for more details.

r-cbrt 0.1.1
Propagated dependencies: r-data-table@1.17.8 r-curl@7.0.0
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/etaymaz/CBRT
Licenses: GPL 3
Build system: r
Synopsis: CBRT Data on Turkish Economy
Description:

The Central Bank of the Republic of Turkey (CBRT) provides one of the most comprehensive time series databases on the Turkish economy. The CBRT package provides functions for accessing the CBRT's electronic data delivery system <https://evds2.tcmb.gov.tr/>. It contains the lists of all data categories and data groups for searching the available variables (data series). As of November 3, 2024, there were 40,826 variables in the dataset. The lists of data categories and data groups can be updated by the user at any time. A specific variable, a group of variables, or all variables in a data group can be downloaded at different frequencies using a variety of aggregation methods.

r-gips 1.2.3
Propagated dependencies: r-rlang@1.1.6 r-permutations@1.1-6 r-numbers@0.9-2
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://github.com/PrzeChoj/gips
Licenses: GPL 3+
Build system: r
Synopsis: Gaussian Model Invariant by Permutation Symmetry
Description:

Find the permutation symmetry group such that the covariance matrix of the given data is approximately invariant under it. Discovering such a permutation decreases the number of observations needed to fit a Gaussian model, which is of great use when it is smaller than the number of variables. Even if that is not the case, the covariance matrix found with gips approximates the actual covariance with less statistical error. The methods implemented in this package are described in Graczyk et al. (2022) <doi:10.1214/22-AOS2174>. Documentation about gips is provided via its website at <https://przechoj.github.io/gips/> and the paper by Chojecki, Morgen, KoÅ odziejek (2025, <doi:10.18637/jss.v112.i07>).

r-mmad 2.0
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MMAD
Licenses: GPL 3
Build system: r
Synopsis: An R Package of Minorization-Maximization Algorithm via the Assembly--Decomposition Technology
Description:

The minorization-maximization (MM) algorithm is a powerful tool for maximizing nonconcave target function. However, for most existing MM algorithms, the surrogate function in the minorization step is constructed in a case-specific manner and requires manual programming. To address this limitation, we develop the R package MMAD, which systematically integrates the assembly--decomposition technology in the MM framework. This new package provides a comprehensive computational toolkit for one-stop inference of complex target functions, including function construction, evaluation, minorization and optimization via MM algorithm. By representing the target function through a hierarchical composition of assembly functions, we design a hierarchical algorithmic structure that supports both bottom-up operations (construction, evaluation) and top-down operation (minorization).

r-marr 1.20.0
Propagated dependencies: r-summarizedexperiment@1.40.0 r-s4vectors@0.48.0 r-rlang@1.1.6 r-rcpp@1.1.0 r-magrittr@2.0.4 r-ggplot2@4.0.1 r-dplyr@1.1.4
Channel: guix-bioc
Location: guix-bioc/packages/m.scm (guix-bioc packages m)
Home page: https://bioconductor.org/packages/marr
Licenses: GPL 3+
Build system: r
Synopsis: Maximum rank reproducibility
Description:

marr (Maximum Rank Reproducibility) is a nonparametric approach that detects reproducible signals using a maximal rank statistic for high-dimensional biological data. In this R package, we implement functions that measures the reproducibility of features per sample pair and sample pairs per feature in high-dimensional biological replicate experiments. The user-friendly plot functions in this package also plot histograms of the reproducibility of features per sample pair and sample pairs per feature. Furthermore, our approach also allows the users to select optimal filtering threshold values for the identification of reproducible features and sample pairs based on output visualization checks (histograms). This package also provides the subset of data filtered by reproducible features and/or sample pairs.

r-ccid 1.2.0
Propagated dependencies: r-idetect@0.1.0 r-hdbinseg@1.0.3 r-genenet@1.2.17 r-gdata@3.0.1
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/Anastasiou-Andreas/ccid
Licenses: GPL 3
Build system: r
Synopsis: Cross-Covariance Isolate Detect: a New Change-Point Method for Estimating Dynamic Functional Connectivity
Description:

This package provides efficient implementation of the Cross-Covariance Isolate Detect (CCID) methodology for the estimation of the number and location of multiple change-points in the second-order (cross-covariance or network) structure of multivariate, possibly high-dimensional time series. The method is motivated by the detection of change points in functional connectivity networks for functional magnetic resonance imaging (fMRI), electroencephalography (EEG), magentoencephalography (MEG) and electrocorticography (ECoG) data. The main routines in the package have been extensively tested on fMRI data. For details on the CCID methodology, please see Anastasiou et al (2022), Cross-covariance isolate detect: A new change-point method for estimating dynamic functional connectivity. Medical Image Analysis, Volume 75.

r-lvgp 2.1.5
Propagated dependencies: r-randtoolbox@2.0.5 r-lhs@1.2.0
Channel: guix-cran
Location: guix-cran/packages/l.scm (guix-cran packages l)
Home page: https://cran.r-project.org/package=LVGP
Licenses: GPL 2
Build system: r
Synopsis: Latent Variable Gaussian Process Modeling with Qualitative and Quantitative Input Variables
Description:

Fit response surfaces for datasets with latent-variable Gaussian process modeling, predict responses for new inputs, and plot latent variables locations in the latent space (only 1D or 2D). The input variables of the datasets can be quantitative, qualitative/categorical or mixed. The output variable of the datasets is a scalar (quantitative). The optimization of the likelihood function is done using a successive approximation/relaxation algorithm similar to another GP modeling package "GPM". The modeling method is published in "A Latent Variable Approach to Gaussian Process Modeling with Qualitative and Quantitative Factors" by Yichi Zhang, Siyu Tao, Wei Chen, and Daniel W. Apley (2018) <arXiv:1806.07504>. The package is developed in IDEAL of Northwestern University.

r-sprt 1.1.0
Propagated dependencies: r-rlang@1.1.6 r-ggplot2@4.0.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SPRT
Licenses: Expat
Build system: r
Synopsis: Sequential Probability Ratio Test (SPRT) Method
Description:

This package provides functions to perform the Sequential Probability Ratio Test (SPRT) for hypothesis testing in Binomial, Poisson and Normal distributions. The package allows users to specify Type I and Type II error probabilities, decision thresholds, and compare null and alternative hypotheses sequentially as data accumulate. It includes visualization tools for plotting the likelihood ratio path and decision boundaries, making it easier to interpret results. The methods are based on Wald (1945) <doi:10.1214/aoms/1177731118>, who introduced the SPRT as one of the earliest and most powerful sequential analysis techniques. This package is useful in quality control, clinical trials, and other applications requiring early decision-making.The term SPRT is an abbreviation and used intentionally.

r-msig 1.0
Propagated dependencies: r-xml2@1.5.0 r-tmcn@0.2-13 r-stringr@1.6.0 r-sqldf@0.4-11 r-set@1.2 r-rvest@1.0.5 r-plyr@1.8.9 r-kableextra@1.4.0 r-jsonlite@2.0.0 r-httr@1.4.7 r-dplyr@1.1.4 r-do@2.0.0.1 r-crayon@1.5.3
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=msig
Licenses: GPL 2
Build system: r
Synopsis: An R Package for Exploring Molecular Signatures Database
Description:

The Molecular Signatures Database ('MSigDB') is one of the most widely used and comprehensive databases of gene sets for performing gene set enrichment analysis <doi:10.1016/j.cels.2015.12.004>. The msig package provides you with powerful, easy-to-use and flexible query functions for the MsigDB database. There are 2 query modes in the msig package: online query and local query. Both queries contain 2 steps: gene set name and gene. The online search is divided into 2 modes: registered search and non-registered browse. For registered search, email that you registered should be provided. Local queries can be made from local database, which can be updated by msig_update() function.

Page: 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268
Total results: 30426