This package allows the user to create, manipulate, and visualize splicing graphs and their bubbles based on a gene model for a given organism. Additionally it allows the user to assign RNA-seq reads to the edges of a set of splicing graphs, and to summarize them in different ways.
The spatialHeatmap
package offers the primary functionality for visualizing cell-, tissue- and organ-specific assay data in spatial anatomical images. Additionally, it provides extended functionalities for large-scale data mining routines and co-visualizing bulk and single-cell data. A description of the project is available here: https://spatialheatmap.org.
This package provides a collection of functions for estimating spatial regimes, aggregations of neighboring spatial units that are homogeneous in functional terms. The term spatial regime, therefore, should not be understood as a synonym for cluster. More precisely, the term cluster does not presuppose any functional relationship between the variables considered, while the term regime is linked to a regressive relationship underlying the spatial process.
Read in SAS Data ('.sas7bdat Files) into Apache Spark from R. Apache Spark is an open source cluster computing framework available at <http://spark.apache.org>. This R package uses the spark-sas7bdat Spark package (<https://spark-packages.org/package/saurfang/spark-sas7bdat>) to import and process SAS data in parallel using Spark'. Hereby allowing to execute dplyr statements in parallel on top of SAS data.
This package performs analysis of split-split plot experiments in both completely randomized and randomized complete block designs. With the results, you can obtain ANOVA, mean tests, and regression analysis (Este pacote faz a analise de experimentos em parcela subsubdivididas no delineamento inteiramente casualizado e delineamento em blocos casualizados. Com resultados e possà vel obter a ANOVA, testes de medias e análise de regressao) <https://www.expstat.com/pacotes-do-r>.
The SPARRA risk score (Scottish Patients At Risk of admission and Re-Admission) estimates yearly risk of emergency hospital admission using electronic health records on a monthly basis for most of the Scottish population. This package implements a suite of functions used to analyse the behaviour and performance of the score, focusing particularly on differential performance over demographically-defined groups. It includes useful utility functions to plot receiver-operator-characteristic, precision-recall and calibration curves, draw stock human figures, estimate counterfactual quantities without the need to re-compute risk scores, to simulate a semi-realistic dataset. Our manuscript can be found at: <doi:10.1371/journal.pdig.0000675>.
This package implements functionality for exploratory data analysis and nonparametric analysis of spatial data, mainly spatial point patterns, in the spatstat family of packages. Methods include quadrat counts, K-functions and their simulation envelopes, nearest neighbour distance and empty space statistics, Fry plots, pair correlation function, kernel smoothed intensity, relative risk estimation with cross-validated bandwidth selection, mark correlation functions, segregation indices, mark dependence diagnostics, and kernel estimates of covariate effects. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported.
This package provides a sparklyr extension adding the capability to work easily with nested data.
This is a subset of the spatstat package, containing its functionality for spatial data on a linear network.
This package performs cluster analysis of mixed-type data using Spectral Clustering, see F. Mbuga and, C. Tortora (2022) <doi:10.3390/stats5010001>.
This package defines sparse three-dimensional arrays and supports standard operations on them. The package also includes utility functions for matrix calculations that are common in statistics, such as quadratic forms.
This is a collection of publically available spatial omics datasets. Where possible we have curated these datasets as either SpatialExperiments
, MoleculeExperiments
or CytoImageLists
and included annotations of the sample characteristics.
Computes spatial position models: the potential model as defined by Stewart (1941) <doi:10.1126/science.93.2404.89> and catchment areas as defined by Reilly (1931) or Huff (1964) <doi:10.2307/1249154>.
This is a package for estimation of one-dimensional probability distributions including kernel density estimation, weighted empirical cumulative distribution functions, Kaplan-Meier and reduced-sample estimators for right-censored data, heat kernels, kernel properties, quantiles and integration.
This package provides a collection of classes and methods for working with indexed rectangular data. The index values can be calendar (timeSeries
class) or numeric (signalSeries
class). Methods are included for aggregation, alignment, merging, and summaries. The code was originally available in S-PLUS'.
Estimates Hessian of a scalar-valued function, and returns it in a sparse Matrix format. The sparsity pattern must be known in advance. The algorithm is especially efficient for hierarchical models with a large number of heterogeneous units. See Braun, M. (2017) <doi:10.18637/jss.v082.i10>.
The SplicingFactory
R package uses transcript-level expression values to analyze splicing diversity based on various statistical measures, like Shannon entropy or the Gini index. These measures can quantify transcript isoform diversity within samples or between conditions. Additionally, the package analyzes the isoform diversity data, looking for significant changes between conditions.
This package provides tools to compute and assess significance of early-warnings signals (EWS) of ecosystem degradation on raster data sets. EWS are spatial metrics derived from raster data -- e.g. spatial autocorrelation -- that increase before an ecosystem undergoes a non-linear transition (Genin et al. (2018) <doi:10.1111/2041-210X.13058>).
Spatial allelic expression counts from Combs & Fraser (2018), compiled into a SummarizedExperiment
object. This package contains data of allelic expression counts of spatial slices of a fly embryo, a Drosophila melanogaster x Drosophila simulans cross. See the CITATION file for the data source, and the associated script for how the object was constructed from publicly available data.
Apply the spectral residual algorithm to data, such as a time series, to detect anomalies. Anomaly scores can be used to determine outliers based upon a threshold or fed into more sophisticated prediction models. Methods are based upon "Time-Series Anomaly Detection Service at Microsoft", Ren, H., Xu, B., Wang, Y., et al., (2019) <doi:10.48550/arXiv.1906.03821>
.
This package provides tools for the statistical modelling of spatial extremes using max-stable processes, copula or Bayesian hierarchical models. More precisely, this package allows (conditional) simulations from various parametric max-stable models, analysis of the extremal spatial dependence, the fitting of such processes using composite likelihoods or least square (simple max-stable processes only), model checking and selection and prediction.
Online data collection tools like Google Forms often export multiple-response questions with data concatenated in cells. The concat.split
(cSplit) family of functions provided by this package splits such data into separate cells. This package also includes functions to stack groups of columns and to reshape wide data, even when the data are "unbalanced"---something which reshape
(from base R) does not handle, and which melt
and dcast
from reshape2
do not easily handle.
This package provides functionality for random generation of spatial data in the spatstat family of packages. It generates random spatial patterns of points according to many simple rules (complete spatial randomness, Poisson, binomial, random grid, systematic, cell), randomised alteration of patterns (thinning, random shift, jittering), simulated realisations of random point processes (simple sequential inhibition, Matern inhibition models, Matern cluster process, Neyman-Scott cluster processes, log-Gaussian Cox processes, product shot noise cluster processes) and simulation of Gibbs point processes (Metropolis-Hastings birth-death-shift algorithm, alternating Gibbs sampler).
This package implements functionality for exploratory data analysis and nonparametric analysis of spatial data, mainly spatial point patterns, in the spatstat
family of packages. Methods include quadrat counts, K-functions and their simulation envelopes, nearest neighbour distance and empty space statistics, Fry plots, pair correlation function, kernel smoothed intensity, relative risk estimation with cross-validated bandwidth selection, mark correlation functions, segregation indices, mark dependence diagnostics, and kernel estimates of covariate effects. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported.