This sparklyr extension makes Flint time series library functionalities (<https://github.com/twosigma/flint>) easily accessible through R.
This package contains utility functions for the spatstat
package which may also be useful for other purposes.
Use RcppEigen
to fit least trimmed squares regression models with an L1 penalty in order to obtain sparse models.
Extension to the spatstat package, enabling the user to fit point process models to point pattern data by local composite likelihood ('geographically weighted regression').
This package provides an S4 class for representing and interacting with sparse plus rank matrices. At the moment the implementation is quite spare, but the plan is eventually subclass Matrix objects.
This package provides a general framework for performing sparse functional clustering as originally described in Floriello and Vitelli (2017) <doi:10.1016/j.jmva.2016.10.008>, with the possibility of jointly handling data misalignment (see Vitelli, 2019, <doi:10.48550/arXiv.1912.00687>
).
This package provides a simple tool for numerical optimization on the unit sphere. This is achieved by combining the spherical coordinating system with L-BFGS-B optimization. This algorithm is implemented in Kolkiewicz, A., Rice, G., & Xie, Y. (2020) <doi:10.1016/j.jspi.2020.07.001>.
This package allows the user to create, manipulate, and visualize splicing graphs and their bubbles based on a gene model for a given organism. Additionally it allows the user to assign RNA-seq reads to the edges of a set of splicing graphs, and to summarize them in different ways.
The spatialHeatmap
package offers the primary functionality for visualizing cell-, tissue- and organ-specific assay data in spatial anatomical images. Additionally, it provides extended functionalities for large-scale data mining routines and co-visualizing bulk and single-cell data. A description of the project is available here: https://spatialheatmap.org.
This package provides a collection of functions for estimating spatial regimes, aggregations of neighboring spatial units that are homogeneous in functional terms. The term spatial regime, therefore, should not be understood as a synonym for cluster. More precisely, the term cluster does not presuppose any functional relationship between the variables considered, while the term regime is linked to a regressive relationship underlying the spatial process.
Read in SAS Data ('.sas7bdat Files) into Apache Spark from R. Apache Spark is an open source cluster computing framework available at <http://spark.apache.org>. This R package uses the spark-sas7bdat Spark package (<https://spark-packages.org/package/saurfang/spark-sas7bdat>) to import and process SAS data in parallel using Spark'. Hereby allowing to execute dplyr statements in parallel on top of SAS data.
This package performs analysis of split-split plot experiments in both completely randomized and randomized complete block designs. With the results, you can obtain ANOVA, mean tests, and regression analysis (Este pacote faz a analise de experimentos em parcela subsubdivididas no delineamento inteiramente casualizado e delineamento em blocos casualizados. Com resultados e possà vel obter a ANOVA, testes de medias e análise de regressao) <https://www.expstat.com/pacotes-do-r>.
The SPARRA risk score (Scottish Patients At Risk of admission and Re-Admission) estimates yearly risk of emergency hospital admission using electronic health records on a monthly basis for most of the Scottish population. This package implements a suite of functions used to analyse the behaviour and performance of the score, focusing particularly on differential performance over demographically-defined groups. It includes useful utility functions to plot receiver-operator-characteristic, precision-recall and calibration curves, draw stock human figures, estimate counterfactual quantities without the need to re-compute risk scores, to simulate a semi-realistic dataset. Our manuscript can be found at: <doi:10.1371/journal.pdig.0000675>.
This package implements functionality for exploratory data analysis and nonparametric analysis of spatial data, mainly spatial point patterns, in the spatstat family of packages. Methods include quadrat counts, K-functions and their simulation envelopes, nearest neighbour distance and empty space statistics, Fry plots, pair correlation function, kernel smoothed intensity, relative risk estimation with cross-validated bandwidth selection, mark correlation functions, segregation indices, mark dependence diagnostics, and kernel estimates of covariate effects. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported.
This package provides a sparklyr extension adding the capability to work easily with nested data.
This is a subset of the spatstat package, containing its functionality for spatial data on a linear network.
This package performs cluster analysis of mixed-type data using Spectral Clustering, see F. Mbuga and, C. Tortora (2022) <doi:10.3390/stats5010001>.
This package defines sparse three-dimensional arrays and supports standard operations on them. The package also includes utility functions for matrix calculations that are common in statistics, such as quadratic forms.
This is a collection of publically available spatial omics datasets. Where possible we have curated these datasets as either SpatialExperiments
, MoleculeExperiments
or CytoImageLists
and included annotations of the sample characteristics.
Computes spatial position models: the potential model as defined by Stewart (1941) <doi:10.1126/science.93.2404.89> and catchment areas as defined by Reilly (1931) or Huff (1964) <doi:10.2307/1249154>.
This is a package for estimation of one-dimensional probability distributions including kernel density estimation, weighted empirical cumulative distribution functions, Kaplan-Meier and reduced-sample estimators for right-censored data, heat kernels, kernel properties, quantiles and integration.
This package provides a collection of classes and methods for working with indexed rectangular data. The index values can be calendar (timeSeries
class) or numeric (signalSeries
class). Methods are included for aggregation, alignment, merging, and summaries. The code was originally available in S-PLUS'.
Estimates Hessian of a scalar-valued function, and returns it in a sparse Matrix format. The sparsity pattern must be known in advance. The algorithm is especially efficient for hierarchical models with a large number of heterogeneous units. See Braun, M. (2017) <doi:10.18637/jss.v082.i10>.
The SplicingFactory
R package uses transcript-level expression values to analyze splicing diversity based on various statistical measures, like Shannon entropy or the Gini index. These measures can quantify transcript isoform diversity within samples or between conditions. Additionally, the package analyzes the isoform diversity data, looking for significant changes between conditions.