Easily cache and retrieve computation results. The package works seamlessly across interactive R sessions, R scripts and Rmarkdown documents.
It is sometimes useful to perform a computation in a separate R process, without affecting the current R process at all. This package does exactly that.
This package allows building the hierarchy of domains starting from Hi-C data. Each hierarchical level is identified by a minimum value of physical insulation between neighboring domains.
Implementations of canonical associative learning models, with tools to run experiment simulations, estimate model parameters, and compare model representations. Experiments and results are represented using S4 classes and methods.
Emulation of an application originally created by Paul Pukite. Computer Aided Rate Modeling and Simulation. Jan Pukite and Paul Pukite, (1998, ISBN 978-0-7803-3482), William J. Stewart, (1994, ISBN: 0-691-03699-3).
Non-linear/linear hybrid method for batch-effect correction that uses Mutual Nearest Neighbors (MNNs) to identify similar cells between datasets. Reference: Loza M. et al. (NAR Genomics and Bioinformatics, 2020) <doi:10.1093/nargab/lqac022>.
This package creates multi-label cell-types for single-cell RNA-sequencing data based on weighted VAM scoring of cell-type specific gene sets. Schiebout, Frost (2022) <https://psb.stanford.edu/psb-online/proceedings/psb22/schiebout.pdf>.
This package estimates conditional Akaike information in mixed-effect models. These models are fitted using (g)lmer()
from lme4, lme()
from nlme, and gamm()
from mgcv. The provided functions facilitate the computation of the conditional Akaike information for model evaluation.
This package lets you construct Clinical Data Interchange Standards Consortium (CDISC) compliant Analysis Results Data objects. These objects are used and re-used to construct summary tables, visualizations, and written reports. The package also exports utilities for working with these objects and creating new Analysis Results Data objects.
This package lets you create extra Analysis Results Data (ARD) summary objects. The package supplements the simple ARD functions from the cards
package, exporting functions to put statistical results in the ARD format. These objects are used and re-used to construct summary tables, visualizations, and written reports.
Get text from images of text using Captricity Optical Character Recognition (OCR) API. Captricity allows you to get text from handwritten forms --- think surveys --- and other structured paper documents. And it can output data in form a delimited file keeping field information intact. For more information, read <https://shreddr.captricity.com/developer/overview/>.
Enables simultaneous statistical inference for the accuracy of multiple classifiers in multiple subgroups (strata). For instance, allows to perform multiple comparisons in diagnostic accuracy studies with co-primary endpoints sensitivity and specificity (Westphal M, Zapf A. Statistical inference for diagnostic test accuracy studies with multiple comparisons. Statistical Methods in Medical Research. 2024;0(0). <doi:10.1177/09622802241236933>).
Compute covariate-adjusted specificity at controlled sensitivity level, or covariate-adjusted sensitivity at controlled specificity level, or covariate-adjust receiver operating characteristic curve, or covariate-adjusted thresholds at controlled sensitivity/specificity level. All statistics could also be computed for specific sub-populations given their covariate values. Methods are described in Ziyi Li, Yijian Huang, Datta Patil, Martin G. Sanda (2021+) "Covariate adjustment in continuous biomarker assessment".
This package provides a framework is provided to develop R packages using Rust <https://www.rust-lang.org/> with minimal overhead, and more wrappers are easily added. Help is provided to use Cargo <https://doc.rust-lang.org/cargo/> in a manner consistent with CRAN policies. Rust code can also be embedded directly in an R script. The package is not official, affiliated with, nor endorsed by the Rust project.
Stan based functions to estimate CAR-MM models. These models allow to estimate Generalised Linear Models with CAR (conditional autoregressive) spatial random effects for spatially and temporally misaligned data, provided a suitable Multiple Membership matrix. The main references are Gramatica, Liverani and Congdon (2023) <doi:10.1214/23-BA1370>, Petrof, Neyens, Nuyts, Nackaerts, Nemery and Faes (2020) <doi:10.1002/sim.8697> and Gramatica, Congdon and Liverani <doi:10.1111/rssc.12480>.
This package performs both stepwise and backward heuristic search for candidate (epi)genetic drivers based on a binary multi-omics dataset. CaDrA's
main objective is to identify features which, together, are significantly skewed or enriched pertaining to a given vector of continuous scores (e.g. sample-specific scores representing a phenotypic readout of interest, such as protein expression, pathway activity, etc.), based on the union occurence (i.e. logical OR) of the events.
This package contains Coverage Adjusted Standardized Mutual Information ('CASMI')-based functions. CASMI is a fundamental concept of a series of methods. For more information about CASMI and CASMI'-related methods, please refer to the corresponding publications (e.g., a feature selection method, Shi, J., Zhang, J., & Ge, Y. (2019) <doi:10.3390/e21121179>, and a dataset quality measurement method, Shi, J., Zhang, J., & Ge, Y. (2019) <doi:10.1109/ICHI.2019.8904553>) or contact the package author for the latest updates.
This package provides functions and command-line user interface to generate allocation sequence by covariate-adaptive randomization for clinical trials. The package currently supports six covariate-adaptive randomization procedures. Three hypothesis testing methods that are valid and robust under covariate-adaptive randomization are also available in the package to facilitate the inference for treatment effect under the included randomization procedures. Additionally, the package provides comprehensive and efficient tools to allow one to evaluate and compare the performance of randomization procedures and tests based on various criteria. See Ma W, Ye X, Tu F, and Hu F (2023) <doi: 10.18637/jss.v107.i02> for details.
This package provides a Cairo graphics device that can be use to create high-quality vector (PDF, PostScript and SVG) and bitmap output (PNG, JPEG, TIFF), and high-quality rendering in displays (X11 and Win32). Since it uses the same back-end for all output, copying across formats is WYSIWYG. Files are created without the dependence on X11 or other external programs. This device supports alpha channel (semi-transparent drawing) and resulting images can contain transparent and semi-transparent regions. It is ideal for use in server environments (file output) and as a replacement for other devices that don't have Cairo's capabilities such as alpha support or anti-aliasing. Backends are modular such that any subset of backends is supported.
The _CAGEr_ package identifies transcription start sites (TSS) and their usage frequency from CAGE (Cap Analysis Gene Expression) sequencing data. It normalises raw CAGE tag count, clusters TSSs into tag clusters (TC) and aggregates them across multiple CAGE experiments to construct consensus clusters (CC) representing the promoterome. CAGEr provides functions to profile expression levels of these clusters by cumulative expression and rarefaction analysis, and outputs the plots in ggplot2 format for further facetting and customisation. After clustering, CAGEr performs analyses of promoter width and detects differential usage of TSSs (promoter shifting) between samples. CAGEr also exports its data as genome browser tracks, and as R objects for downsteam expression analysis by other Bioconductor packages such as DESeq2, CAGEfightR
, or seqArchR
.
Encrypts and decrypts strings using either the Caesar cipher or a pseudorandom number generation (using set.seed()
) method.
Annotation of peaklists generated by xcms, rule based annotation of isotopes and adducts, isotope validation, EIC correlation based tagging of unknown adducts and fragments.
Play casino games in the R console, including poker, blackjack, and a slot machine. Try to build your fortune before you succumb to the gambler's ruin!
Generates the calibration simplex (a generalization of the reliability diagram) for three-category probability forecasts, as proposed by Wilks (2013) <doi:10.1175/WAF-D-13-00027.1>.