Models the relationship between dose levels and responses in a pharmacological experiment using the 4 Parameter Logistic model. Traditional packages on dose-response modelling such as drc and nplr often draw errors due to convergence failure especially when data have outliers or non-logistic shapes. This package provides robust estimation methods that are less affected by outliers and other initialization methods that work well for data lacking logistic shapes. We provide the bounds on the parameters of the 4PL model that prevent parameter estimates from diverging or converging to zero and base their justification in a statistical principle. These methods are used as remedies to convergence failure problems. Gadagkar, S. R. and Call, G. B. (2015) <doi:10.1016/j.vascn.2014.08.006> Ritz, C. and Baty, F. and Streibig, J. C. and Gerhard, D. (2015) <doi:10.1371/journal.pone.0146021>.
To overcome the memory limitations for fitting linear (LM) and Generalized Linear Models (GLMs) to large data sets, this package implements the Divide and Recombine (D&R) strategy. It basically divides the entire large data set into suitable subsets manageable in size and then fits model to each subset. Finally, results from each subset are aggregated to obtain the final estimate. This package also supports fitting GLMs to data sets that cannot fit into memory and provides methods for fitting GLMs under linear regression, binomial regression, Poisson regression, and multinomial logistic regression settings. Respective models are fitted using different D&R strategies as described by: Xi, Lin, and Chen (2009) <doi:10.1109/TKDE.2008.186>, Xi, Lin and Chen (2006) <doi:10.1109/TKDE.2006.196>, Zuo and Li (2018) <doi:10.4236/ojs.2018.81003>, Karim, M.R., Islam, M.A. (2019) <doi:10.1007/978-981-13-9776-9>.
This package implements targeted minimum loss-based estimators of counterfactual means and causal effects that are doubly-robust with respect both to consistency and asymptotic normality.
Decodes meshes and point cloud data encoded by the Draco mesh compression library from Google. Note that this is only designed for basic decoding and not intended as a full scale wrapping of the Draco library.
This package provides a penalized/non-penalized implementation for dynamic regression in the presence of autocorrelated residuals (DREGAR) using iterative penalized/ordinary least squares. It applies Mallows CP, AIC, BIC and GCV to select the tuning parameters.
Feed longitudinal data into a Bayesian Latent Factor Model to obtain a low-rank representation. Parameters are estimated using a Hamiltonian Monte Carlo algorithm with STAN. See G. Weinrott, B. Fontez, N. Hilgert and S. Holmes, "Bayesian Latent Factor Model for Functional Data Analysis", Actes des JdS
2016.
This package provides a R driver for Apache Drill<https://drill.apache.org>, which could connect to the Apache Drill cluster<https://drill.apache.org/docs/installing-drill-on-the-cluster> or drillbit<https://drill.apache.org/docs/embedded-mode-prerequisites> and get result(in data frame) from the SQL query and check the current configuration status. This link <https://drill.apache.org/docs> contains more information about Apache Drill.
This package performs the drifting Markov models (DMM) which are non-homogeneous Markov models designed for modeling the heterogeneities of sequences in a more flexible way than homogeneous Markov chains or even hidden Markov models. In this context, we developed an R package dedicated to the estimation, simulation and the exact computation of associated reliability of drifting Markov models. The implemented methods are described in Vergne, N. (2008), <doi:10.2202/1544-6115.1326> and Barbu, V.S., Vergne, N. (2019) <doi:10.1007/s11009-018-9682-8> .
An interactive image editing tool that can be added as part of the HTML in Shiny, R markdown or any type of HTML document. Often times, plots, photos are embedded in the web application/file. drawer can take screenshots of these image-like elements, or any part of the HTML document and send to an image editing space called canvas to allow users immediately edit the screenshot(s) within the same document. Users can quickly combine, compare different screenshots, upload their own images and maybe make a scientific figure.
Cancer genomes contain large numbers of somatic alterations but few genes drive tumor development. Identifying cancer driver genes is critical for precision oncology. Most of current approaches either identify driver genes based on mutational recurrence or using estimated scores predicting the functional consequences of mutations. driveR
is a tool for personalized or batch analysis of genomic data for driver gene prioritization by combining genomic information and prior biological knowledge. As features, driveR
uses coding impact metaprediction scores, non-coding impact scores, somatic copy number alteration scores, hotspot gene/double-hit gene condition, phenolyzer gene scores and memberships to cancer-related KEGG pathways. It uses these features to estimate cancer-type-specific probability for each gene of being a cancer driver using the related task of a multi-task learning classification model. The method is described in detail in Ulgen E, Sezerman OU. 2021. driveR
: driveR
: a novel method for prioritizing cancer driver genes using somatic genomics data. BMC Bioinformatics <doi:10.1186/s12859-021-04203-7>.
Offers robust tools to identify and manage incomplete responses in survey datasets, thereby enhancing the quality and reliability of research findings.
Provide tools for drought monitoring based on univariate and multivariate drought indicators.Statistical drought prediction based on Ensemble Streamflow Prediction (ESP), drought risk assessments, and drought propagation are also provided. Please see Hao Zengchao et al. (2017) <doi:10.1016/j.envsoft.2017.02.008>.
The package provides two frameworks. One for the differential transcript usage analysis between different conditions and one for the tuQTL analysis. Both are based on modeling the counts of genomic features (i.e., transcripts) with the Dirichlet-multinomial distribution. The package also makes available functions for visualization and exploration of the data and results.
Fit and explore Drift Diffusion Models (DDMs), a common tool in psychology for describing decision processes in simple tasks. It can handle both time-independent and time-dependent DDMs. You either choose prebuilt models or create your own, and the package takes care of model predictions and parameter estimation. Model predictions are derived via the numerical solutions provided by Richter, Ulrich, and Janczyk (2023, <doi:10.1016/j.jmp.2023.102756>).
Fits dose-response models utilizing a Bayesian model averaging approach as outlined in Gould (2019) <doi:10.1002/bimj.201700211> for both continuous and binary responses. Longitudinal dose-response modeling is also supported in a Bayesian model averaging framework as outlined in Payne, Ray, and Thomann (2024) <doi:10.1080/10543406.2023.2292214>. Functions for plotting and calculating various posterior quantities (e.g. posterior mean, quantiles, probability of minimum efficacious dose, etc.) are also implemented. Copyright Eli Lilly and Company (2019).
Concept drift refers to the change in the data distribution or in the relationships between variables over time. drifter calculates distances between variable distributions or variable relations and identifies both types of drift. Key functions are: calculate_covariate_drift()
checks distance between corresponding variables in two datasets, calculate_residuals_drift()
checks distance between residual distributions for two models, calculate_model_drift()
checks distance between partial dependency profiles for two models, check_drift()
executes all checks against drift. drifter is a part of the DrWhy.AI
universe (Biecek 2018) <arXiv:1806.08915>
.
This package provides methods for simultaneous clustering and dimensionality reduction such as: Double k-means, Reduced k-means, Factorial k-means, Clustering with Disjoint PCA but also methods for exclusively dimensionality reduction: Disjoint PCA, Disjoint FA. The statistical methods implemented refer to the following articles: de Soete G., Carroll J. (1994) "K-means clustering in a low-dimensional Euclidean space" <doi:10.1007/978-3-642-51175-2_24> ; Vichi M. (2001) "Double k-means Clustering for Simultaneous Classification of Objects and Variables" <doi:10.1007/978-3-642-59471-7_6> ; Vichi M., Kiers H.A.L. (2001) "Factorial k-means analysis for two-way data" <doi:10.1016/S0167-9473(00)00064-5> ; Vichi M., Saporta G. (2009) "Clustering and disjoint principal component analysis" <doi:10.1016/j.csda.2008.05.028> ; Vichi M. (2017) "Disjoint factor analysis with cross-loadings" <doi:10.1007/s11634-016-0263-9>.
Several functions are provided for dose-response (or concentration-response) characterization from omics data. DRomics is especially dedicated to omics data obtained using a typical dose-response design, favoring a great number of tested doses (or concentrations) rather than a great number of replicates (no need of replicates). DRomics provides functions 1) to check, normalize and or transform data, 2) to select monotonic or biphasic significantly responding items (e.g. probes, metabolites), 3) to choose the best-fit model among a predefined family of monotonic and biphasic models to describe each selected item, 4) to derive a benchmark dose or concentration and a typology of response from each fitted curve. In the available version data are supposed to be single-channel microarray data in log2, RNAseq data in raw counts, or already pretreated continuous omics data (such as metabolomic data) in log scale. In order to link responses across biological levels based on a common method, DRomics also handles apical data as long as they are continuous and follow a normal distribution for each dose or concentration, with a common standard error. For further details see Delignette-Muller et al (2023) <DOI:10.24072/pcjournal.325> and Larras et al (2018) <DOI:10.1021/acs.est.8b04752>.
Consider ambiguity in probabilistic descriptions by replacing a parametric probabilistic description of uncertainty by a non-parametric set of probability distributions in the form of a Density Ratio Class. This is of particular interest in Bayesian inference. The Density Ratio Class is particularly suited for this purpose as it is invariant under Bayesian inference, marginalization, and propagation through a deterministic model. Here, invariant means that the result of the operation applied to a Density Ratio Class is again a Density Ratio Class. In particular the invariance under Bayesian inference thus enables iterative learning within the same framework of Density Ratio Classes. The use of imprecise probabilities in general, and Density Ratio Classes in particular, lead to intervals of characteristics of probability distributions, such as cumulative distribution functions, quantiles, and means. The package is based on a sample of the distribution proportional to the upper bound of the class. Typically this will be a sample from the posterior in Bayesian inference. Based on such a sample, the package provides functions to calculate lower and upper class boundaries and lower and upper bounds of cumulative distribution functions, and quantiles. Rinderknecht, S.L., Albert, C., Borsuk, M.E., Schuwirth, N., Kuensch, H.R. and Reichert, P. (2014) "The effect of ambiguous prior knowledge on Bayesian model parameter inference and prediction." Environmental Modelling & Software. 62, 300-315, 2014. <doi:10.1016/j.envsoft.2014.08.020>. Sriwastava, A. and Reichert, P. "Robust Bayesian Estimation of Value Function Parameters using Imprecise Priors." Submitted. <https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4973574>.
Implement the statistical test proposed in Weng et al. (2021) to test whether the average treatment effect curve is constant and whether a discrete covariate is a significant effect modifier.
This package offers a quick and straight-forward way to explore and perform basic analysis of single cell sequencing data coming from droplet sequencing. It has been particularly tailored for Drop-seq.
Move elements between containers in Shiny without explicitly using JavaScript
'. It can be used to build custom inputs or to change the positions of user interface elements like plots or tables.
This is an R package for imputing dropout events. Many statistical methods in cell type identification, visualization and lineage reconstruction do not account for dropout events. DrImpute can improve the performance of such software by imputing dropout events.
This package provides a comprehensive toolkit for analyzing microscopy data output from QuPath
software. Provides functionality for automated data processing, metadata extraction, and statistical analysis of imaging results. The methodology implemented in this package is based on Labrosse et al. (2024) <doi:10.1016/j.xpro.2024.103274> "Protocol for quantifying drug sensitivity in 3D patient-derived ovarian cancer models", which describes the complete workflow for drug sensitivity analysis in patient-derived cancer models.