Density, distribution, quantile and random generation function for the logitnormal distribution. Estimation of the mode and the first two moments. Estimation of distribution parameters.
Contains routines for logspline density estimation. The function oldlogspline()
uses the same algorithm as the logspline package version 1.0.x; i.e., the Kooperberg and Stone (1992) algorithm (with an improved interface). The recommended routine logspline()
uses an algorithm from Stone et al (1997).
Uses approximations to compute the natural logarithm of the Gamma function for large values.
This package provides functions to sample from the double log normal distribution and calculate the density, distribution and quantile functions.
This package provides functions to fits simple linear regression models with log normal errors and identity link, i.e. taking the responses on the original scale. See Muggeo (2018) <doi:10.13140/RG.2.2.18118.16965>.
Based on right or interval censored data, compute the maximum likelihood estimator of a (sub)probability density under the assumption that it is log-concave. For further information see Duembgen, Rufibach and Schuhmacher (2014) <doi:10.1214/14-EJS930>.
Error in a binary dependent variable, also known as misclassification, has not drawn much attention in psychology. Ignoring misclassification in logistic regression can result in misleading parameter estimates and statistical inference. This package conducts logistic regression analysis with misspecification in outcome variables.
Adjusted odds ratio conditional on potential confounders can be directly obtained from logistic regression. However, those adjusted odds ratios have been widely incorrectly interpreted as a relative risk. As relative risk is often of interest in public health, we provide a simple code to return adjusted relative risks from logistic regression model under potential confounders.
Given independent and identically distributed observations X(1), ..., X(n), compute the maximum likelihood estimator (MLE) of a density as well as a smoothed version of it under the assumption that the density is log-concave, see Rufibach (2007) and Duembgen and Rufibach (2009). The main function of the package is logConDens
that allows computation of the log-concave MLE and its smoothed version. In addition, we provide functions to compute (1) the value of the density and distribution function estimates (MLE and smoothed) at a given point (2) the characterizing functions of the estimator, (3) to sample from the estimated distribution, (5) to compute a two-sample permutation test based on log-concave densities, (6) the ROC curve based on log-concave estimates within cases and controls, including confidence intervals for given values of false positive fractions (7) computation of a confidence interval for the value of the true density at a fixed point. Finally, three datasets that have been used to illustrate log-concave density estimation are made available.
Dimensionality reduction techniques for binary data including logistic PCA.
This package provides tools for assessing equivalence of similar Logistic Regression models.
Software for computing a log-concave (maximum likelihood) estimator for independent and identically distributed data in any number of dimensions. For a detailed description of the method see Cule, Samworth and Stewart (2010, Journal of Royal Statistical Society Series B, <doi:10.1111/j.1467-9868.2010.00753.x>).
Here we provide an implementation of the linear and logistic regression-based Reliable Change Index (RCI), to be used with lm and binomial glm model objects, respectively, following Moral et al. <https://psyarxiv.com/gq7az/>. The RCI function returns a score assumed to be approximately normally distributed, which is helpful to detect patients that may present cognitive decline.
Two classification ensemble methods based on logic regression models. LogForest()
uses a bagging approach to construct an ensemble of logic regression models. LBoost()
uses a combination of boosting and cross-validation to construct an ensemble of logic regression models. Both methods are used for classification of binary responses based on binary predictors and for identification of important variables and variable interactions predictive of a binary outcome. Wolf, B.J., Slate, E.H., Hill, E.G. (2010) <doi:10.1093/bioinformatics/btq354>.
Given independent and identically distributed observations X(1), ..., X(n), allows to compute the maximum likelihood estimator (MLE) of probability mass function (pmf) under the assumption that it is log-concave, see Weyermann (2007) and Balabdaoui, Jankowski, Rufibach, and Pavlides (2012). The main functions of the package are logConDiscrMLE
that allows computation of the log-concave MLE, logConDiscrCI
that computes pointwise confidence bands for the MLE, and kInflatedLogConDiscr
that computes a mixture of a log-concave PMF and a point mass at k.
An implementation of a method of extending a logistic regression model beyond linear effects of the co-variates. The extension in is constructed by first equating the logistic regression model to a naive Bayes model where all the margins are specified to follow natural exponential distributions conditional on Y, that is, a model for Y given X that is specified through the distribution of X given Y, where the columns of X are assumed to be mutually independent conditional on Y. Subsequently, the model is expanded by adding vine - copulas to relax the assumption of mutual independence, where pair-copulas are added in a stage-wise, forward selection manner. Some heuristics are employed during the process of selecting edges, as well as the families of pair-copula models. After each component is added, the parameters are updated by a (smaller) number of gradient steps to maximise the likelihood. When the algorithm has stopped adding edges, based the criterion that a new edge should improve the likelihood more than k times the number new parameters, the parameters are updated with a larger number of gradient steps, or until convergence.
Automatically returns 36 logistic models including 23 individual models and 13 ensembles of models of logistic data. The package also returns 10 plots, 5 tables, and a summary report. The package automatically builds all 36 models, reports all results, and provides graphics to show how the models performed. This can be used for a wide range of data sets. The package includes medical data (the Pima Indians data set), and information about the performance of Lebron James. The package can be used to analyze many other examples, such as stock market data. The package automatically returns many values for each model, such as True Positive Rate, True Negative Rate, False Positive Rate, False Negative Rate, Positive Predictive Value, Negative Predictive Value, F1 Score, Area Under the Curve. The package also returns 36 Receiver Operating Characteristic (ROC) curves for each of the 36 models.
This package provides a system for fitting Logistic Curve by Rhodes Method. Method for fitting logistic curve by Rhodes Method is described in A.M.Gun,M.K.Gupta and B.Dasgupta(2019,ISBN:81-87567-81-3).