This package contains functions for the SCENT algorithm. SCENT uses single-cell multimodal data and links ATAC-seq peaks to their target genes by modeling association between chromatin accessibility and gene expression across individual single cells.
The vegan package provides tools for descriptive community ecology. It has most basic functions of diversity analysis, community ordination and dissimilarity analysis. Most of its multivariate tools can be used for other data types as well.
User-facing R functions are provided to parse, compile, test, estimate, and analyze Stan models by accessing the header-only Stan library provided by the StanHeaders package. The Stan project develops a probabilistic programming language that implements full Bayesian statistical inference via Markov Chain Monte Carlo, rough Bayesian inference via 'variational' approximation, and (optionally penalized) maximum likelihood estimation via optimization. In all three cases, automatic differentiation is used to quickly and accurately evaluate gradients without burdening the user with the need to derive the partial derivatives.
dwm is a dynamic window manager for X. It manages windows in tiled, monocle and floating layouts. All of the layouts can be applied dynamically, optimising the environment for the application in use and the task performed.
This package provides bias-corrected estimates for the regression coefficients of a marginal model estimated with generalized estimating equations. Details about the bias formula used are in Lunardon, N., Scharfstein, D. (2017) <doi:10.1002/sim.7366>.
Adjusting the bias due to residual confounding (often called treatment selection bias) in estimating the treatment effect in a proportional hazard model, as described in Williamson et al. (2022) <doi:10.1158/1078-0432.ccr-21-2468>.
This package provides access to a range of functions for analyzing, applying and visualizing Bayesian response-adaptive trial designs for a binary endpoint. Includes the predictive probability approach and the predictive evidence value designs for binary endpoints.
This package provides a Bayesian variable selection approach using continuous spike and slab prior distributions. The prior choices here are motivated by the shrinking and diffusing priors studied in Narisetty & He (2014) <DOI:10.1214/14-AOS1207>.
This package creates multi-label cell-types for single-cell RNA-sequencing data based on weighted VAM scoring of cell-type specific gene sets. Schiebout, Frost (2022) <https://psb.stanford.edu/psb-online/proceedings/psb22/schiebout.pdf>.
Create, edit, and remove cron jobs on your unix-alike system. The package provides a set of easy-to-use wrappers to crontab'. It also provides an RStudio add-in to easily launch and schedule your scripts.
This package provides tools for evaluating link prediction and clustering algorithms with respect to ground truth. Includes efficient implementations of common performance measures such as pairwise precision/recall, cluster homogeneity/completeness, variation of information, Rand index etc.
Simulation of Electric Vehicles charging sessions using Gaussian models, together with time-series power demand calculations. The simulation methodology is published in Cañigueral et al. (2023, ISBN:0957-4174) <doi:10.1016/j.eswa.2023.120318>.
We implement (or re-implements in R) a variety of statistical tools. They are focused on non-parametric two-sample (or k-sample) distribution comparisons in the univariate or multivariate case. See the vignette for more info.
With no external dependencies and support for 335 languages; all languages spoken by more than one million speakers. Franc is a port of the JavaScript
project of the same name, see <https://github.com/wooorm/franc>.
Enables high-dimensional penalized regression across heterogeneous subgroups. Fusion penalties are used to share information about the linear parameters across subgroups. The underlying model is described in detail in Dondelinger and Mukherjee (2017) <arXiv:1611.00953>
.
This package provides functions for printing the contents of a folder as columns in a ragged-bottom data.frame and for viewing the details (size, time created, time modified, etc.) of a folder's top level contents.
Implementation of several generalized F-statistics. The current version includes a generalized F-statistic based on the flexible isotonic/monotonic regression or order restricted hypothesis testing. Based on: Y. Lai (2011) <doi:10.1371/journal.pone.0019754>.
Leveraging information-theoretic measures like mutual information and v-measure to quantify spatial associations between patterns (Nowosad and Stepinski (2018) <doi:10.1080/13658816.2018.1511794>; Bai, H. et al. (2023) <doi:10.1080/24694452.2023.2223700>).
Infix operators to detect, subset, and replace the elements matched by a given condition. The functions have several variants of operator types, including subsets, ranges, regular expressions and others. Implemented operators work on vectors, matrices, and lists.
Implementations of estimation algorithm of low rank plus sparse structured VAR model by using Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). It relates to the algorithm in Sumanta, Li, and Michailidis (2019) <doi:10.1109/TSP.2018.2887401>.
Imputes missing values of an incomplete data matrix by minimizing the Mahalanobis distance of each sample from the overall mean [Labita, GJ.D. and Tubo, B.F. (2024) <doi:10.24412/1932-2321-2024-278-115-123>].
Calculating the stability of random forest with certain numbers of trees. The non-linear relationship between stability and numbers of trees is described using a logistic regression model and used to estimate the optimal number of trees.
This package implements the objective Bayesian methodology proposed in Consonni and Deldossi in order to choose the optimal experiment that better discriminate between competing models, see Deldossi and Nai Ruscone (2020) <doi:10.18637/jss.v094.i02>.
This package provides a system contains easy-to-use tools for the conditional estimation of the prevalence of an emerging or rare infectious diseases using the methods proposed in Guerrier et al. (2023) <arXiv:2012.10745>
.