UpSet plots are an improvement over Venn Diagram for set overlap visualizations. Striving to bring the best of the UpSetR and ggplot2, this package offers a way to create complex overlap visualisations, using simple and familiar tools.
This package extends Ivy by showing more information in the minibuffer for each candidate. It adds columns showing buffer modes, file sizes, docstrings, etc. If emacs-all-the-icons is installed, it can show icons as well.
This package provides functions for working with magnetic resonance images. It supports reading and writing of popular file formats (DICOM, Analyze, NIfTI-1, NIfTI-2, MGH); interactive and non-interactive visualization; flexible image manipulation; metadata and sparse image handling.
This is a Python package for performing representational similarity analysis (RSA) using MNE-Python data structures. The main use-case is to perform RSA using a “searchlight” approach through time and/or a volumetric or surface source space.
This package provides functions to perform k-prototypes partitioning clustering for mixed variable-type data according to Z.Huang (1998): Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Variables, Data Mining and Knowledge Discovery 2, 283-304.
This package contains functions for the analysis of Discrete Time Hidden Markov Models, Markov Modulated GLMs and the Markov Modulated Poisson Process. It includes functions for simulation, parameter estimation, and the Viterbi algorithm. The algorithms are based of those of Walter Zucchini.
This package contains the datasets and a few functions for use with the practicals outlined in Appendix A of the book Statistical Models (Davison, 2003, Cambridge University Press). The practicals themselves can be found at http://statwww.epfl.ch/davison/SM/.
This package provides the output of running various transcript abundance quantifiers on a set of 6 RNA-seq samples from the GEUVADIS project. The quantifiers were Cufflinks, RSEM, kallisto, Salmon and Sailfish. Alevin example output is also included.
Test::Unit is unit testing framework for Ruby, based on xUnit principles. These were originally designed by Kent Beck, creator of extreme programming software development methodology, for Smalltalk's SUnit. It allows writing tests, checking results and automated testing in Ruby.
Test::Unit is unit testing framework for Ruby, based on xUnit principles. These were originally designed by Kent Beck, creator of extreme programming software development methodology, for Smalltalk's SUnit. It allows writing tests, checking results and automated testing in Ruby.
This package lets you fit generalized linear mixed models for a single grouping factor under maximum likelihood approximating the integrals over the random effects with an adaptive Gaussian quadrature rule; Jose C. Pinheiro and Douglas M. Bates (1995) <doi:10.1080/10618600.1995.10474663>.
This package provides delayed computation of a matrix of scaled and centered values. The result is equivalent to using the scale function but avoids explicit realization of a dense matrix during block processing. This permits greater efficiency in common operations, most notably matrix multiplication.
mlr3learners extends mlr3 and mlr3proba with interfaces to essential machine learning packages on CRAN. This includes, but is not limited to: (penalized) linear and logistic regression, linear and quadratic discriminant analysis, k-nearest neighbors, naive Bayes, support vector machines, and gradient boosting.
This package defines S4 classes for single-cell genomic data and associated information, such as dimensionality reduction embeddings, nearest-neighbor graphs, and spatially-resolved coordinates. It provides data access methods and R-native hooks to ensure the Seurat object is familiar to other R users.
This package provides a set of tools built around updateObject() to work with old serialized S4 instances. The package is primarily useful to package maintainers who want to update the serialized S4 instances included in their package. This is still work-in-progress.
This package provides a complete ROCm toolchain for C/C++ development to be installed in user profiles. This includes Clang, as well as libc (headers and binaries, plus debugging symbols in the debug output), Binutils, the ROCm device libraries, and the ROCr runtime.
Coordinate-based genomic visualization package for R. It grants users the ability to programmatically produce complex, multi-paneled figures. Tailored for genomics, plotgardener allows users to visualize large complex genomic datasets and provides exquisite control over how plots are placed and arranged on a page.
This package defines S4 classes for single-cell genomic data and associated information, such as dimensionality reduction embeddings, nearest-neighbor graphs, and spatially-resolved coordinates. It provides data access methods and R-native hooks to ensure the Seurat object is familiar to other R users.
The Mechanize library is used for automating interaction with websites. Mechanize automatically stores and sends cookies, follows redirects, and can follow links and submit forms. Form fields can be populated and submitted. Mechanize also keeps track of the sites that you have visited as a history.
This package provides an extensible framework for automatically placing direct labels onto multicolor plots. Label positions are described using positioning methods that can be re-used across several different plots. There are heuristics for examining trellis and ggplot objects and inferring an appropriate positioning method.
This package provides tools for data frame summaries, cross-tabulations, weight-enabled frequency tables and common univariate statistics in concise tables available in a variety of formats (plain ASCII, Markdown and HTML). A good point-of-entry for exploring data, both for experienced and new R users.
This package provides implementations of apply(), eapply(), lapply(), Map(), mapply(), replicate(), sapply(), tapply(), and vapply() that can be resolved using any future-supported backend, e.g. parallel on the local machine or distributed on a compute cluster.
This is a package for parameter description and operations in optimization, tuning and machine learning. Parameters can be described (type, constraints, defaults, etc.), combined to parameter sets and can in general be programmed on. A useful OptPath object (archive) to log function evaluations is also provided.
Mass spectrometry (MS) data backend supporting import and export of MS/MS spectra data from Mascot Generic Format (mgf) files. Objects defined in this package are supposed to be used with the Spectra Bioconductor package. This package thus adds mgf file support to the Spectra package.