Likelihood ratio and maximum likelihood statistics are provided that can be used as alternatives to p-values Colquhoun (2017) <doi:10.1098/rsos.171085>. Arguments can be either p-values or t-statistics. together with degrees of freedom. For the function tTOlr
', the argument twoSided
has the default twoSided
= TRUE'.
Obtain United States map data frames of varying region types (e.g. county, state). The map data frames include Alaska and Hawaii conveniently placed to the bottom left, as they appear in most maps of the US. Convenience functions for plotting choropleths, visualizing spatial data, and working with FIPS codes are also provided.
Supplies permutation-test alternatives to traditional hypothesis-test procedures such as two-sample tests for means, medians, and standard deviations; correlation tests; tests for homogeneity and independence; and more. Suitable for general audiences, including individual and group users, introductory statistics courses, and more advanced statistics courses that desire an introduction to permutation tests.
Nonparametric estimation of discount functions and yield curves from transaction data of coupon paying bonds. Koo, B., La Vecchia, D., & Linton, O. B. (2021) <doi:10.1016/j.jeconom.2020.04.014> describe an application of this package using the Center for Research in Security Prices (CRSP) Bond Data and document its implementation.
Redkite is a small GUI toolkit developed in C++17 and inspired from other well known GUI toolkits such as Qt and GTK. It is minimal on purpose and is intended to be statically linked to applications, therefore satisfying any requirements they may have to be self contained, as is the case with audio plugins.
This package provides functions necessary to perform Weighted Correlation Network Analysis on high-dimensional data. It includes functions for rudimentary data cleaning, construction and summarization of correlation networks, module identification and functions for relating both variables and modules to sample traits. It also includes a number of utility functions for data manipulation and visualization.
The canonical way to perform meta-analysis involves using effect sizes. When they are not available this package provides a number of methods for meta-analysis of significance values including the methods of Edgington, Fisher, Stouffer, Tippett, and Wilkinson; a number of data-sets to replicate published results; and a routine for graphical display.
This package reads and writes data files like CSV, TSV and FWF. When reading it uses a quick initial indexing step, then reads the values lazily, so only the data you actually use needs to be read. The writer formats the data in parallel and writes to disk asynchronously from formatting.
This package allows the user to create new Github gists, update gists with new files, rename files, delete files, get and delete gists, star and un-star them, fork them, open a gist in your default browser, get an embed code for a gist, list gist commits, and get rate limit information when authenticated.
This package provides a proof of concept implementation of regularized non-negative matrix factorization optimization. A non-negative matrix factorization factors non-negative matrix Y approximately as L R, for non-negative matrices L and R of reduced rank. This package supports such factorizations with weighted objective and regularization penalties. Allowable regularization penalties include L1 and L2 penalties on L and R, as well as non-orthogonality penalties. This package provides multiplicative update algorithms, which are a modification of the algorithm of Lee and Seung (2001) <http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf>, as well as an additive update derived from that multiplicative update. See also Pav (2004) <doi:10.48550/arXiv.2410.22698>
.
Simulation tool to estimate the rate of success that surveys possessing user-specific characteristics have in identifying archaeological sites (or any groups of clouds of objects), given specific parameters of survey area, survey methods, and site properties. The survey approach used is largely based on the work of Kintigh (1988) <doi:10.2307/281113>.
Scripting of structural equation models via lavaan for Dyadic Data Analysis, and helper functions for supplemental calculations, tabling, and model visualization. Current models supported include Dyadic Confirmatory Factor Analysis, the Actorâ Partner Interdependence Model (observed and latent), the Common Fate Model (observed and latent), Mutual Influence Model (latent), and the Bifactor Dyadic Model (latent).
Produce maximum likelihood estimates of common accuracy statistics for multiple measurement methods when a gold standard is not available. An R implementation of the expectation maximization algorithms described in Zhou et al. (2011) <doi:10.1002/9780470906514> with additional functions for creating simulated data and visualizing results. Supports binary, ordinal, and continuous measurement methods.
Create fake datasets that can be used for prototyping and teaching. This package provides a set of functions to generate fake data for a variety of data types, such as dates, addresses, and names. It can be used for prototyping (notably in shiny') or as a tool to teach data manipulation and data visualization.
We propose the inverse probability-of-censoring weighted (IPCW) Kendall's tau to measure the association of the survival trait with biomarkers and Kendall's partial correlation to reflect the relationship of the survival trait with interaction variable conditional on main effects, as described in Wang and Chen (2020) <doi:10.1093/bioinformatics/btaa017>.
This package provides a set of functions to compute the Hodrick-Prescott (HP) filter with automatically selected jumps. The original HP filter extracts a smooth trend from a time series, and our version allows for a small number of automatically identified jumps. See Maranzano and Pelagatti (2024) <doi:10.2139/ssrn.4896170> for details.
This package provides a GUI interface for automating data extraction from multiple images containing scatter and bar plots, semi-automated tools to tinker with extraction attempts, and a fully-loaded point-and-click manual extractor with image zoom, calibrator, and classifier. Also provides detailed and R-independent extraction reports as fully-embedded .html records.
This package provides a variety of models to analyze latent variables based on Bayesian learning: the partially CFA (Chen, Guo, Zhang, & Pan, 2020) <DOI: 10.1037/met0000293>; generalized PCFA; partially confirmatory IRM (Chen, 2020) <DOI: 10.1007/s11336-020-09724-3>; Bayesian regularized EFA <DOI: 10.1080/10705511.2020.1854763>; Fully and partially EFA.
This package implements the LS-PLS (least squares - partial least squares) method described in for instance Jørgensen, K., Segtnan, V. H., Thyholt, K., Næs, T. (2004) "A Comparison of Methods for Analysing Regression Models with Both Spectral and Designed Variables" Journal of Chemometrics, 18(10), 451--464, <doi:10.1002/cem.890>.
Classify missing data as missing completely at random (MCAR), missing at random (MAR), or missing not at random (MNAR). This step is required before handling missing data (e.g. mean imputation) so that bias is not introduced. See Little (1988) <doi:10.1080/01621459.1988.10478722> for the statistical rationale for the methods used.
This package provides a generalization of principal component analysis for integrative analysis. The method finds principal components that describe single matrices or that are common to several matrices. The solutions are sparse. Rank of solutions is automatically selected using cross validation. The method is described in Kallus et al. (2019) <arXiv:1911.04927>
.
Post-selection inference in linear regression models, constructing simultaneous confidence intervals across a user-specified universe of models. Implements the methodology described in Kuchibhotla, Kolassa, and Kuffner (2022) "Post-Selection Inference" <doi:10.1146/annurev-statistics-100421-044639> to ensure valid inference after model selection, with applications in high-dimensional settings like Lasso selection.
Robust penalized (adaptive) elastic net S and M estimators for linear regression. The methods are proposed in Cohen Freue, G. V., Kepplinger, D., Salibián-Barrera, M., and Smucler, E. (2019) <https://projecteuclid.org/euclid.aoas/1574910036>. The package implements the extensions and algorithms described in Kepplinger, D. (2020) <doi:10.14288/1.0392915>.
Quantile regression (QR) for Linear Mixed-Effects Models via the asymmetric Laplace distribution (ALD). It uses the Stochastic Approximation of the EM (SAEM) algorithm for deriving exact maximum likelihood estimates and full inference results for the fixed-effects and variance components. It also provides graphical summaries for assessing the algorithm convergence and fitting results.