Calculates and plots the SiZer map for scatterplot data. A SiZer map is a way of examining when the p-th derivative of a scatterplot-smoother is significantly negative, possibly zero or significantly positive across a range of smoothing bandwidths.
Hierarchical models for the analysis of species-area relationships (SARs) by combining several data sets and covariates; with a global data set combining individual SAR studies; as described in Solymos and Lele (2012) <doi:10.1111/j.1466-8238.2011.00655.x>.
This package implements S3 classes for storing dates and date-times based on the Jalali calendar. The main design goal of shide is consistency with base R's Date and POSIXct'. It provide features such as: date-time parsing, formatting and arithmetic.
Cluster user-supplied somatic read counts with corresponding allele-specific copy number and tumor purity to infer feasible underlying intra-tumor heterogeneity in terms of number of subclones, multiplicity, and allocation (Little et al. (2019) <doi:10.1186/s13073-019-0643-9>).
This package provides utilities for conducting specification curve analyses (Simonsohn, Simmons & Nelson (2020, <doi: 10.1038/s41562-020-0912-z>) or multiverse analyses (Steegen, Tuerlinckx, Gelman & Vanpaemel, 2016, <doi: 10.1177/1745691616658637>) including functions to setup, run, evaluate, and plot all specifications.
Implementations self-normalization (SN) based algorithms for change-points estimation in time series data. This comprises nested local-window algorithms for detecting changes in both univariate and multivariate time series developed in Zhao, Jiang and Shao (2022) <doi:10.1111/rssb.12552>.
This package provides a set of functions that allow users for styling their R code according to the tidyverse style guide. The package uses a native Rust implementation to ensure the highest performance. Learn more about tergo at <https://rtergo.pagacz.io>.
Encapsulates the pattern of untidying data into a wide matrix, performing some processing, then turning it back into a tidy form. This is useful for several operations such as co-occurrence counts, correlations, or clustering that are mathematically convenient on wide matrices.
Simplify the process of extracting and processing Clinical Practice Research Datalink (CPRD) data in order to build datasets ready for statistical analysis. This process is difficult in R', as the raw data is very large and cannot be read into the R workspace. rcprd utilises RSQLite to create SQLite databases which are stored on the hard disk. These are then queried to extract the required information for a cohort of interest, and create datasets ready for statistical analysis. The processes follow closely that from the rEHR package, see Springate et al., (2017) <doi:10.1371/journal.pone.0171784>.
An implementation of a probabilistic modeling framework that jointly analyzes personal genome and transcriptome data to estimate the probability that a variant has regulatory impact in that individual. It is based on a generative model that assumes that genomic annotations, such as the location of a variant with respect to regulatory elements, determine the prior probability that variant is a functional regulatory variant, which is an unobserved variable. The functional regulatory variant status then influences whether nearby genes are likely to display outlier levels of gene expression in that person. See the RIVER website for more information, documentation and examples.
Understanding heterogeneous causal effects based on pretreatment covariates is a crucial step in modern empirical work in data science. Building on the recent developments in Calonico et al (2025) <https://rdpackages.github.io/references/Calonico-Cattaneo-Farrell-Palomba-Titiunik_2025_HTERD.pdf>, this package provides tools for estimation and inference of heterogeneous treatment effects in Regression Discontinuity (RD) Designs. The package includes two main commands: rdhte to conduct estimation and robust bias-corrected inference for conditional RD treatment effects (given choice of bandwidth parameter); rdbwhte', which implements automatic bandwidth selection methods; and rdhte_lincom to test linear combinations of parameters.
This package is used for the identification and validation of sequence motifs. It makes use of STAMP for comparing a set of motifs to a given database (e.g. JASPAR). It can also be used to visualize motifs, motif distributions, modules and filter motifs.
This package provides functions to compute insolation on tilted surfaces, computes atmospheric transmittance and related parameters such as: Earth radius vector, declination, sunset and sunrise, daylength, equation of time, vector in the direction of the sun, vector normal to surface, and some atmospheric physics.
This package provides functions for fitting and plotting SITAR growth curve models. SITAR is a shape- invariant model with a regression B-spline mean curve and subject-specific random effects on both the measurement and age scales.
Given a protein multiple sequence alignment, it is a daunting task to assess the effects of substitutions along sequence length. The aaSEA package is intended to help researchers to rapidly analyze property changes caused by single, multiple and correlated amino acid substitutions in proteins.
Radicle is a peer-to-peer code collaboration stack built on Git. Unlike centralized code hosting platforms, there is no single entity controlling the network. Repositories are replicated across peers in a decentralized manner, and users are in full control of their data and workflow.
Co-expression analysis for expression profiles arising from high-throughput sequencing data. Feature (e.g., gene) profiles are clustered using adapted transformations and mixture models or a K-means algorithm, and model selection criteria (to choose an appropriate number of clusters) are provided.
Build and visualize functional gene and term networks from clustering of enrichment analyses in multiple annotation spaces. The package includes a graphical user interface (GUI) and functions to perform the functional enrichment analysis through DAVID, GeneTerm Linker, gage (GSEA) and topGO.
Find the most characteristic gene ontology terms for groups of human genes. This package was created as a part of the thesis which was developed under the auspices of MI^2 Group (http://mi2.mini.pw.edu.pl/, https://github.com/geneticsMiNIng).
Easily estimate the introduction rates of alien species given first records data. It specializes in addressing the role of sampling on the pattern of discoveries, thus providing better estimates than using Generalized Linear Models which assume perfect immediate detection of newly introduced species.
Compute a tree level hierarchy, judgment matrix, consistency index and ratio, priority vectors, hierarchic synthesis and rank. Based on the book entitled "Models, Methods, Concepts and Applications of the Analytic Hierarchy Process" by Saaty and Vargas (2012, ISBN 978-1-4614-3597-6).
Model-based clustering using Bayesian parsimonious Gaussian mixture models. MCMC (Markov chain Monte Carlo) are used for parameter estimation. The RJMCMC (Reversible-jump Markov chain Monte Carlo) is used for model selection. GREEN et al. (1995) <doi:10.1093/biomet/82.4.711>.
This package provides tools to model and forecast multivariate time series including Bayesian Vector heterogeneous autoregressive (VHAR) model by Kim & Baek (2023) (<doi:10.1080/00949655.2023.2281644>). bvhar can model Vector Autoregressive (VAR), VHAR, Bayesian VAR (BVAR), and Bayesian VHAR (BVHAR) models.
Phase I/II adaptive dose-finding design for single-agent Molecularly Targeted Agent (MTA), according to the paper "Phase I/II Dose-Finding Design for Molecularly Targeted Agent: Plateau Determination using Adaptive Randomization", Riviere Marie-Karelle et al. (2016) <doi:10.1177/0962280216631763>.