This package provides tools for retrieving, organizing, and analyzing environmental data from the System Wide Monitoring Program of the National Estuarine Research Reserve System <https://cdmo.baruch.sc.edu/>. These tools address common challenges associated with continuous time series data for environmental decision making.
This package provides tools for reading, visualising and processing Magnetic Resonance Spectroscopy data. The package includes methods for spectral fitting: Wilson (2021) <DOI:10.1002/mrm.28385>, Wilson (2025) <DOI:10.1002/mrm.30462> and spectral alignment: Wilson (2018) <DOI:10.1002/mrm.27605>.
This package provides a simple type annotation for R that is usable in scripts, in the R console and in packages. It is intended as a convention to allow other packages to use the type information to provide error checking, automatic documentation or optimizations.
This package provides a novel and fast two stage method for simultaneous multiple change point detection and variable selection for piecewise stationary autoregressive (PSAR) processes and linear regression model. It also simultaneously performs variable selection for each autoregressive model and hence the order selection.
Accompanies the book Rainer Schlittgen and Cristina Sattarhoff (2020) <https://www.degruyter.com/view/title/575978> "Angewandte Zeitreihenanalyse mit R, 4. Auflage" . The package contains the time series and functions used therein. It was developed over many years teaching courses about time series analysis.
With this package we provide an easy method to compute robust and conditional Data Envelopment Analysis (DEA), Free Disposal Hull (FDH) and Benefit of the Doubt (BOD) scores. The robust approach is based on the work of Cazals, Florens and Simar (2002) <doi:10.1016/S0304-4076(01)00080-X>. The conditional approach is based on Daraio and Simar (2007) <doi:10.1007/s11123-007-0049-3>. Besides we provide graphs to help with the choice of m. We relay on the Benchmarking package to compute the efficiency scores and on the np package to compute non parametric estimation of similarity among units.
Fit (exponential or diffusion) response-time extended multinomial processing tree (RT-MPT) models by Klauer and Kellen (2018) <doi:10.1016/j.jmp.2017.12.003> and Klauer, Hartmann, and Meyer-Grant (submitted). The RT-MPT class not only incorporate frequencies like traditional multinomial processing tree (MPT) models, but also latencies. This enables it to estimate process completion times and encoding plus motor execution times next to the process probabilities of traditional MPTs. rtmpt is a hierarchical Bayesian framework and posterior samples are sampled using a Metropolis-within-Gibbs sampler (for exponential RT-MPTs) or Hamiltonian-within-Gibbs sampler (for diffusion RT-MPTs).
This package contains functions to retrieve, organize, and visualize weather data from the NCEP/NCAR Reanalysis (<https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html>) and NCEP/DOE Reanalysis II (<https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html>) datasets. Data are queried via the Internet and may be obtained for a specified spatial and temporal extent or interpolated to a point in space and time. We also provide functions to visualize these weather data on a map. There are also functions to simulate flight trajectories according to specified behavior using either NCEP wind data or data specified by the user.
Estimates Pareto-optimal solution for personnel selection with 3 objectives using Normal Boundary Intersection (NBI) algorithm introduced by Das and Dennis (1998) <doi:10.1137/S1052623496307510>. Takes predictor intercorrelations and predictor-objective relations as input and generates a series of solutions containing predictor weights as output. Accepts between 3 and 10 selection predictors. Maximum 2 objectives could be adverse impact objectives. Partially modeled after De Corte (2006) TROFSS Fortran program <https://users.ugent.be/~wdecorte/trofss.pdf> and updated from ParetoR package described in Song et al. (2017) <doi:10.1037/apl0000240>. For details, see Study 3 of Zhang et al. (2023).
Sensitivity (or recall or true positive rate), false positive rate, specificity, precision (or positive predictive value), negative predictive value, misclassification rate, accuracy, F-score---these are popular metrics for assessing performance of binary classifiers for certain thresholds. These metrics are calculated at certain threshold values. Receiver operating characteristic (ROC) curve is a common tool for assessing overall diagnostic ability of the binary classifier. Unlike depending on a certain threshold, area under ROC curve (also known as AUC), is a summary statistic about how well a binary classifier performs overall for the classification task. The ROCit package provides flexibility to easily evaluate threshold-bound metrics.
This package contains many functions useful for data analysis, high-level graphics, utility operations, functions for computing sample size and power, importing and annotating datasets, imputing missing values, advanced table making, variable clustering, character string manipulation, conversion of R objects to LaTeX code, and recoding variables.
Optimized XML (Ox) is a fast XML parser and object serializer for Ruby written as a native C extension. It was designed to be an alternative to Nokogiri and other Ruby XML parsers for generic XML parsing and as an alternative to Marshal for Object serialization.
Strand specific peak-pair calling in ChIP-exo replicates. The cumulative Skellam distribution function is used to detect significant normalised count differences of opposed sign at each DNA strand (peak-pairs). Then, irreproducible discovery rate for overlapping peak-pairs across biological replicates is computed.
Account for missing values in label-free mass spectrometry data without imputation. The package implements a probabilistic dropout model that ensures that the information from observed and missing values are properly combined. It adds empirical Bayesian priors to increase power to detect differentially abundant proteins.
This package addresses the mean-variance relationship in spatially resolved transcriptomics data. Precision weights are generated for individual observations using Empirical Bayes techniques. These weights are used to rescale the data and covariates, which are then used as input in spatially variable gene detection tools.
This package provides methods for measuring the strength of association between a network and a phenotype. It does this by measuring clustering of the phenotype across the network (Knet). Vertices can also be individually ranked by their strength of association with high-weight vertices (Knode).
This package provides functions required to classify subjects within camera trap field data. The package can handle both images and videos. The authors recommend a two-step approach using Microsoft's MegaDector model and then a second model trained on the classes of interest.
Computing and visualizing comparative asymptotic timings of different algorithms and code versions. Also includes functionality for comparing empirical timings with expected references such as linear or quadratic, <https://en.wikipedia.org/wiki/Asymptotic_computational_complexity> Also includes functionality for measuring asymptotic memory and other quantities.
This package provides tools designed to make it easier for beginner and intermediate users to build and validate binary logistic regression models. Includes bivariate analysis, comprehensive regression output, model fit statistics, variable selection procedures, model validation techniques and a shiny app for interactive model building.
Implementation of the CNAIM standard in R. Contains a series of algorithms which determine the probability of failure, consequences of failure and monetary risk associated with electricity distribution companies assets such as transformers and cables. Results are visualized in an easy-to-understand risk matrix.
An R interface to the codediff JavaScript library (a copy of which is included in the package, see <https://github.com/danvk/codediff.js> for information). Allows for visualization of the difference between 2 files, usually text files or R scripts, in a browser.
Includes various functions for playing drum sounds. beat() plays a drum sound from one of the six included drum kits. tempo() sets spacing between calls to beat() in bpm. Together the two functions can be used to create many different drum patterns.
Computes the double bootstrap as discussed in McKnight, McKean, and Huitema (2000) <doi:10.1037/1082-989X.5.1.87>. The double bootstrap method provides a better fit for a linear model with autoregressive errors than ARIMA when the sample size is small.
This package provides tools for working with iEEG matrix data, including downloading curated iEEG data from OSF (The Open Science Framework <https://osf.io/>) (EpochDownloader()), making new objects (Epoch()), processing (crop() and resample()), and visualizing the data (plot()).