Fast computation of the distance covariance dcov and distance correlation dcor'. The computation cost is only O(n log(n)) for the distance correlation (see Chaudhuri, Hu (2019) <arXiv:1810.11332> <doi:10.1016/j.csda.2019.01.016>). The functions are written entirely in C++ to speed up the computation.
Predictors can be converted to one or more numeric representations using a variety of methods. Effect encodings using simple generalized linear models <doi:10.48550/arXiv.1611.09477> or nonlinear models <doi:10.48550/arXiv.1604.06737> can be used. There are also functions for dimension reduction and other approaches.
An easy-to-use web client/wrapper for the Figma API <https://www.figma.com/developers/api>. It allows you to bring all data from a Figma file to your R session. This includes the data of all objects that you have drawn in this file, and their respective canvas/page metadata.
Improved version of GRIN software that streamlines its use in practice to analyze genomic lesion data, accelerate its computing, and expand its analysis capabilities to answer additional scientific questions including a rigorous evaluation of the association of genomic lesions with RNA expression. Pounds, Stan, et al. (2013) <DOI:10.1093/bioinformatics/btt372>.
Set of routines for influence diagnostics by using case-deletion in ordinary least squares, nonlinear regression [Ross (1987). <doi:10.2307/3315198>], ridge estimation [Walker and Birch (1988). <doi:10.1080/00401706.1988.10488370>] and least absolute deviations (LAD) regression [Sun and Wei (2004). <doi:10.1016/j.spl.2003.08.018>].
Download data from Istat (Italian Institute of Statistics) database, both old and new provider (respectively, <http://dati.istat.it/> and <https://esploradati.istat.it/databrowser/>). Additional functions for manipulating data are provided. Moreover, a shiny application called shinyIstat can be used to search, download and filter datasets in an easier way.
This package provides a streamlined cross-referencing system for R Markdown documents generated with knitr'. R Markdown is an authoring format for generating dynamic content from R. kfigr provides a hook for anchoring code chunks and a function to cross-reference document elements generated from said chunks, e.g. figures and tables.
Common mass spectrometry tools described in John Roboz (2013) <doi:10.1201/b15436>. It allows checking element isotopes, calculating (isotope labelled) exact monoisitopic mass, m/z values and mass accuracy, and inspecting possible contaminant mass peaks, examining possible adducts in electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) ion sources.
Access the Red List of Montane Tree Species of the Tropical Andes Tejedor Garavito et al.(2014, ISBN:978-1-905164-60-8). This package allows users to search for globally threatened tree species within the andean montane forests, including cloud forests and seasonal (wet) forests above 1500 m a.s.l.
Multiple contrast tests and simultaneous confidence intervals based on normal approximation. With implementations for binomial proportions in a 2xk setting (risk difference and odds ratio), poly-3-adjusted tumour rates, biodiversity indices (multinomial data) and expected values under lognormal assumption. Approximative power calculation for multiple contrast tests of binomial and Gaussian data.
Automatic time series modelling with neural networks. Allows fully automatic, semi-manual or fully manual specification of networks. For details of the specification methodology see: (i) Crone and Kourentzes (2010) <doi:10.1016/j.neucom.2010.01.017>; and (ii) Kourentzes et al. (2014) <doi:10.1016/j.eswa.2013.12.011>.
QuantLib bindings are provided for R using Rcpp via an evolved version of the initial header-only Quantuccia project offering an subset of QuantLib (now maintained separately just for the calendaring subset). See the included file AUTHORS for a full list of contributors to QuantLib (and hence also Quantuccia').
Procedure to optimally split a dataset for training and testing. SPlit is based on the method of support points, which is independent of modeling methods. Please see Joseph and Vakayil (2021) <doi:10.1080/00401706.2021.1921037> for details. This work is supported by U.S. National Science Foundation grant DMREF-1921873.
Inferring causation from spatial cross-sectional data through empirical dynamic modeling (EDM), with methodological extensions including geographical convergent cross mapping from Gao et al. (2023) <doi:10.1038/s41467-023-41619-6>, as well as the spatial causality test following the approach of Herrera et al. (2016) <doi:10.1111/pirs.12144>.
This package provides a collection of functions for processing raw data from Stream Temperature, Intermittency, and Conductivity (STIC) loggers. STICr (pronounced "sticker") includes functions for tidying, calibrating, classifying, and doing quality checks on data from STIC sensors. Some package functionality is described in Wheeler/Zipper et al. (2023) <doi:10.31223/X5636K>.
Computes Value at risk and expected shortfall, two most popular measures of financial risk, for over one hundred parametric distributions, including all commonly known distributions. Also computed are the corresponding probability density function and cumulative distribution function. See Chan, Nadarajah and Afuecheta (2015) <doi:10.1080/03610918.2014.944658> for more details.
High-level functions to render LaTeX fragments in plots, including as labels and data symbols in ggplot2 plots, plus low-level functions to author LaTeX fragments (to produce LaTeX documents), typeset LaTeX documents (to produce DVI files), read DVI files (to produce "DVI" objects), and render "DVI" objects.
The FDA Adverse Event Reporting System (FAERS) is a database used for the spontaneous reporting of adverse events and medication errors related to human drugs and therapeutic biological products. faers pacakge serves as the interface between the FAERS database and R. Furthermore, faers pacakge offers a standardized approach for performing pharmacovigilance analysis.
Alternative polyadenylation (APA) is one of the important post- transcriptional regulation mechanisms which occurs in most human genes. InPAS facilitates the discovery of novel APA sites and the differential usage of APA sites from RNA-Seq data. It leverages cleanUpdTSeq to fine tune identified APA sites by removing false sites.
This package provides a pipeline for analysis of GC-MS data acquired in selected ion monitoring (SIM) mode. The tool also provides a guidance in choosing appropriate fragments for the targets of interest by using an optimization algorithm. This is done by considering overlapping peaks from a provided library by the user.
This package provides a toolbox for sparse contrastive principal component analysis (scPCA) of high-dimensional biological data. scPCA combines the stability and interpretability of sparse PCA with contrastive PCA's ability to disentangle biological signal from unwanted variation through the use of control data. Also implements and extends cPCA.
The tigre package implements our methodology of Gaussian process differential equation models for analysis of gene expression time series from single input motif networks. The package can be used for inferring unobserved transcription factor (TF) protein concentrations from expression measurements of known target genes, or for ranking candidate targets of a TF.
This package provides functions for reading, writing, plotting, analysing, and manipulating allelic and haplotypic data, including from VCF files, and for the analysis of population nucleotide sequences and micro-satellites including coalescent analyses, linkage disequilibrium, population structure (Fst, Amova) and equilibrium (HWE), haplotype networks, minimum spanning tree and network, and median-joining networks.
Regularised discriminant analysis functions. The classical regularised discriminant analysis proposed by Friedman in 1989, including cross-validation, of which the linear and quadratic discriminant analyses are special cases. Further, the regularised maximum likelihood linear discriminant analysis, including cross-validation. References: Friedman J.H. (1989): "Regularized Discriminant Analysis". Journal of the American Statistical Association 84(405): 165--175. <doi:10.2307/2289860>. Friedman J., Hastie T. and Tibshirani R. (2009). "The elements of statistical learning", 2nd edition. Springer, Berlin. <doi:10.1007/978-0-387-84858-7>. Tsagris M., Preston S. and Wood A.T.A. (2016). "Improved classification for compositional data using the alpha-transformation". Journal of Classification, 33(2): 243--261. <doi:10.1007/s00357-016-9207-5>.