Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Computes the double bootstrap as discussed in McKnight, McKean, and Huitema (2000) <doi:10.1037/1082-989X.5.1.87>. The double bootstrap method provides a better fit for a linear model with autoregressive errors than ARIMA when the sample size is small.
This package provides a tool to sample data with the desired properties.Samples can be drawn by purposive sampling with determining distributional conditions, such as deviation from normality (skewness and kurtosis), and sample size in quantitative research studies. For purposive sampling, a researcher has something in mind and participants that fit the purpose of the study are included (Etikan,Musa, & Alkassim, 2015) <doi:10.11648/j.ajtas.20160501.11>.Purposive sampling can be useful for answering many research questions (Klar & Leeper, 2019) <doi:10.1002/9781119083771.ch21>.
Supports the process of applying a cut to Standard Data Tabulation Model (SDTM), as part of the analysis of specific points in time of the data, normally as part of investigation into clinical trials. The functions support different approaches of cutting to the different domains of SDTM normally observed.
Uses species occupancy at coarse grain sizes to predict species occupancy at fine grain sizes. Ten models are provided to fit and extrapolate the occupancy-area relationship, as well as methods for preparing atlas data for modelling. See Marsh et. al. (2018) <doi:10.18637/jss.v086.c03>.
Prediction methods where explanatory information is coded as a matrix of distances between individuals. Distances can either be directly input as a distances matrix, a squared distances matrix, an inner-products matrix or computed from observed predictors.
This package provides methods to estimate the optimal treatment regime among all linear regimes via smoothed estimation methods, and construct element-wise confidence intervals for the optimal linear treatment regime vector, as well as the confidence interval for the optimal value via wild bootstrap procedures, if the population follows treatments recommended by the optimal linear regime. See more details in: Wu, Y. and Wang, L. (2021), "Resampling-based Confidence Intervals for Model-free Robust Inference on Optimal Treatment Regimes", Biometrics, 77: 465â 476, <doi:10.1111/biom.13337>.
Doubly censored data, as described in Chang and Yang (1987) <doi: 10.1214/aos/1176350608>), are commonly seen in many fields. We use EM algorithm to compute the non-parametric MLE (NPMLE) of the cummulative probability function/survival function and the two censoring distributions. One can also specify a constraint F(T)=C, it will return the constrained NPMLE and the -2 log empirical likelihood ratio for this constraint. This can be used to test the hypothesis about the constraint and, by inverting the test, find confidence intervals for probability or quantile via empirical likelihood ratio theorem. Influence functions of hat F may also be calculated, but currently, the it may be slow.
Simple Principal Components Analysis (PCA) and (Multiple) Correspondence Analysis (CA) based on the Singular Value Decomposition (SVD). This package provides S4 classes and methods to compute, extract, summarize and visualize results of multivariate data analysis. It also includes methods for partial bootstrap validation described in Greenacre (1984, ISBN: 978-0-12-299050-2) and Lebart et al. (2006, ISBN: 978-2-10-049616-7).
Efficient object-oriented R6 dictionary capable of holding objects of any class, including R6. Typed and untyped dictionaries are provided as well as the usual dictionary methods that are available in other OOP languages, for example listing keys, items, values, and methods to get/set these.
Concept drift refers to the change in the data distribution or in the relationships between variables over time. drifter calculates distances between variable distributions or variable relations and identifies both types of drift. Key functions are: calculate_covariate_drift() checks distance between corresponding variables in two datasets, calculate_residuals_drift() checks distance between residual distributions for two models, calculate_model_drift() checks distance between partial dependency profiles for two models, check_drift() executes all checks against drift. drifter is a part of the DrWhy.AI universe (Biecek 2018) <arXiv:1806.08915>.
This package provides methods for simultaneous clustering and dimensionality reduction such as: Double k-means, Reduced k-means, Factorial k-means, Clustering with Disjoint PCA but also methods for exclusively dimensionality reduction: Disjoint PCA, Disjoint FA. The statistical methods implemented refer to the following articles: de Soete G., Carroll J. (1994) "K-means clustering in a low-dimensional Euclidean space" <doi:10.1007/978-3-642-51175-2_24> ; Vichi M. (2001) "Double k-means Clustering for Simultaneous Classification of Objects and Variables" <doi:10.1007/978-3-642-59471-7_6> ; Vichi M., Kiers H.A.L. (2001) "Factorial k-means analysis for two-way data" <doi:10.1016/S0167-9473(00)00064-5> ; Vichi M., Saporta G. (2009) "Clustering and disjoint principal component analysis" <doi:10.1016/j.csda.2008.05.028> ; Vichi M. (2017) "Disjoint factor analysis with cross-loadings" <doi:10.1007/s11634-016-0263-9>.
Decompose a time series into seasonal, trend and irregular components using transformations to amplitude-frequency domain.
Bayesian networks with continuous and/or discrete variables can be learned and compared from data. The method is described in Boettcher and Dethlefsen (2003), <doi:10.18637/jss.v008.i20>.
Allows clinicians and researchers to compute daily dose (and subsequently days supply) for prescription refills using the following methods: Fixed window, fixed tablet, defined daily dose (DDD), and Random Effects Warfarin Days Supply (REWarDS). Daily dose is the computed dose that the patient takes every day. For medications with fixed dosing (e.g. direct oral anticoagulants) this is known and does not need to be estimated. For medications with varying dose such as warfarin, however, the daily dose should be assumed or estimated to allow measurement of drug exposure. Daysâ supply is the number of days that patientsâ supply of medication will last after each prescription fill. Estimating daysâ supply is necessary to calculate drug exposure. The package computes daysâ supply and daily dose at both the prescription and patient levels. Results at the prescription level are denoted with â -Rx-â and those at patient level are denoted with â -Pt-â .
Dynamic linear models and time series regression.
An anonymization algorithm to resist neighbor label attack in a dynamic network.
Statistical methods and related graphical representations for the Desirability of Outcome Ranking (DOOR) methodology. The DOOR is a paradigm for the design, analysis, interpretation of clinical trials and other research studies based on the patient centric benefit risk evaluation. The package provides functions for generating summary statistics from individual level/summary level datasets, conduct DOOR probability-based inference, and visualization of the results. For more details of DOOR methodology, see Hamasaki and Evans (2025) <doi:10.1201/9781003390855>. For more explanation of the statistical methods and the graphics, see the technical document and user manual of the DOOR Shiny apps at <https://methods.bsc.gwu.edu>.
Function to test spatial segregation and association based in contingency table analysis of nearest neighbour counts following Dixon (2002) <doi:10.1080/11956860.2002.11682700>. Some Fortran code has been included to the original dixon2002() function of the ecespa package to improve speed.
Genes that are differentially expressed between two or more experimental conditions can be detected in RNA-Seq. A high biological variability may impact the discovery of these genes once it may be divergent between the fixed effects. However, this variability can be covered by the random effects. DEGRE was designed to identify the differentially expressed genes considering fixed and random effects on individuals. These effects are identified earlier in the experimental design matrix. DEGRE has the implementation of preprocessing procedures to clean the near zero gene reads in the count matrix, normalize by RLE published in the DESeq2 package, Love et al. (2014) <doi:10.1186/s13059-014-0550-8> and it fits a regression for each gene using the Generalized Linear Mixed Model with the negative binomial distribution, followed by a Wald test to assess the regression coefficients.
Functionality for analyzing dose-volume histograms (DVH) in radiation oncology: Read DVH text files, calculate DVH metrics as well as generalized equivalent uniform dose (gEUD), biologically effective dose (BED), equivalent dose in 2 Gy fractions (EQD2), normal tissue complication probability (NTCP), and tumor control probability (TCP). Show DVH diagrams, check and visualize quality assurance constraints for the DVH. Includes web-based graphical user interface.
This package provides a collection of supervised discretization algorithms. It can also be grouped in terms of top-down or bottom-up, implementing the discretization algorithms.
Data and miscellanea to support the book "Introduction to Data analysis with R for Forensic Scientists." This book was written by James Curran and published by CRC Press in 2010 (ISBN: 978-1-4200-8826-7).
Quality control and formatting tools developed for the Copernicus Data Rescue Service. The package includes functions to handle the Station Exchange Format (SEF), various statistical tests for climate data at daily and sub-daily resolution, as well as functions to plot the data. For more information and documentation see <https://datarescue.climate.copernicus.eu/st_data-quality-control>.
Geologic pattern data from <https://ngmdb.usgs.gov/fgdc_gds/geolsymstd.php>. Access functions are provided in the accompanying package deeptime'.