Collect data from and make posts on Bluesky Social via the Hypertext Transfer Protocol (HTTP) Application Programming Interface (API), as documented at <https://atproto.com/specs/xrpc>. This further supports broader queries to the Authenticated Transfer (AT) Protocol <https://atproto.com/> which Bluesky Social relies on. Data is returned in a tidy format and posts can be made using a simple interface.
Render SVG as interactive figures to display contextual information, with selectable and clickable user interface elements. These figures can be seamlessly integrated into rmarkdown and Quarto documents, as well as shiny applications, allowing manipulation of elements and reporting actions performed on them. Additional features include pan, zoom in/out functionality, and the ability to export the figures in SVG or PNG formats.
Different methods to conduct causal inference for multiple treatments with a binary outcome, including regression adjustment, vector matching, Bayesian additive regression trees, targeted maximum likelihood and inverse probability of treatment weighting using different generalized propensity score models such as multinomial logistic regression, generalized boosted models and super learner. For more details, see the paper by Hu et al. <doi:10.1177/0962280220921909>.
Estimates Two-way Fixed Effects difference-in-differences/event-study models using the approach proposed by Gardner (2021) <doi:10.48550/arXiv.2207.05943>. To avoid the problems caused by OLS estimation of the Two-way Fixed Effects model, this function first estimates the fixed effects and covariates using untreated observations and then in a second stage, estimates the treatment effects.
This package provides a collection of asymmetrical kernels belong to lifetime distributions for kernel density estimation is presented. Mean Squared Errors (MSE) are calculated for estimated curves. For this purpose, R functions allow the distribution to be Gamma, Exponential or Weibull. For details see Chen (2000a,b), Jin and Kawczak (2003) and Salha et al. (2014) <doi:10.12988/pms.2014.4616>.
Simple computation of spatial statistic functions of distance to characterize the spatial structures of mapped objects, following Marcon, Traissac, Puech, and Lang (2015) <doi:10.18637/jss.v067.c03>. Includes classical functions (Ripley's K and others) and more recent ones used by spatial economists (Duranton and Overman's Kd, Marcon and Puech's M). Relies on spatstat for some core calculation.
Tidy, analyze, and plot directed acyclic graphs (DAGs). ggdag is built on top of dagitty', an R package that uses the DAGitty web tool (<https://dagitty.net/>) for creating and analyzing DAGs. ggdag makes it easy to tidy and plot dagitty objects using ggplot2 and ggraph', as well as common analytic and graphical functions, such as determining adjustment sets and node relationships.
This package provides a simple mechanism to specify a symmetric block diagonal matrices (often used for covariance matrices). This is based on the domain specific language implemented in nlmixr2 but expanded to create matrices in R generally instead of specifying parts of matrices to estimate. It has expanded to include some matrix manipulation functions that are generally useful for rxode2 and nlmixr2'.
Access to the Greek New Testament (27 books) and the Old Testament (39 books) and allow users to do textual analysis on the data. The New and Old Testament have been provided in their original languages, Greek and Hebrew, respectively. Additionally, the Revised American Standard Bible is also provided for users who'd rather use a wordâ forâ word modern English translation.
Model stability and variable inclusion plots [Mueller and Welsh (2010, <doi:10.1111/j.1751-5823.2010.00108.x>); Murray, Heritier and Mueller (2013, <doi:10.1002/sim.5855>)] as well as the adaptive fence [Jiang et al. (2008, <doi:10.1214/07-AOS517>); Jiang et al. (2009, <doi:10.1016/j.spl.2008.10.014>)] for linear and generalised linear models.
The MCC-F1 analysis is a method to evaluate the performance of binary classifications. The MCC-F1 curve is more reliable than the Receiver Operating Characteristic (ROC) curve and the Precision-Recall (PR)curve under imbalanced ground truth. The MCC-F1 analysis also provides the MCC-F1 metric that integrates classifier performance over varying thresholds, and the best threshold of binary classification.
This package provides functions for manipulating nested data frames in a list-column using dplyr <https://dplyr.tidyverse.org/> syntax. Rather than unnesting, then manipulating a data frame, nplyr allows users to manipulate each nested data frame directly. nplyr is a wrapper for dplyr functions that provide tools for common data manipulation steps: filtering rows, selecting columns, summarising grouped data, among others.
Package for evaluating user-specified finite stage policies and learning optimal treatment policies via doubly robust loss functions. Policy learning methods include doubly robust learning of the blip/conditional average treatment effect and sequential policy tree learning. The package also include methods for optimal subgroup analysis. See Nordland and Holst (2022) <doi:10.48550/arXiv.2212.02335> for documentation and references.
This package implements the Phylogeny-Guided Microbiome OTU-Specific Association Test method, which boosts the testing power by adaptively borrowing information from phylogenetically close OTUs (operational taxonomic units) of the target OTU. This method is built on a kernel machine regression framework and allows for flexible modeling of complex microbiome effects, adjustments for covariates, and can accommodate both continuous and binary outcomes.
Efficient implementations for Sorted L-One Penalized Estimation (SLOPE): generalized linear models regularized with the sorted L1-norm (Bogdan et al. 2015). Supported models include ordinary least-squares regression, binomial regression, multinomial regression, and Poisson regression. Both dense and sparse predictor matrices are supported. In addition, the package features predictor screening rules that enable fast and efficient solutions to high-dimensional problems.
This package implements statistical methods for detecting evolutionary shifts in both the optimal trait value (mean) and evolutionary diffusion variance. The method uses an L1-penalized optimization framework to identify branches where shifts occur, and the shift magnitudes. It also supports the inclusion of measurement error. For more details, see Zhang, Ho, and Kenney (2023) <doi:10.48550/arXiv.2312.17480>.
This package provides a pipeline for short tandem repeat instability analysis from fragment analysis data. Inputs of fsa files or peak tables, and a user supplied metadata data-frame. The package identifies ladders, calls peaks, identifies the modal peaks, calls repeats, then calculates repeat instability metrics (e.g. expansion index from Lee et al. (2010) <doi:10.1186/1752-0509-4-29>).
Download, prepare and analyze data from large-scale assessments and surveys with complex sampling and assessment design (see Rutkowski', 2010 <doi:10.3102/0013189X10363170>). Such studies are, for example, international assessments like TIMSS', PIRLS and PISA'. A graphical interface is available for the non-technical user.The package includes functions to covert the original data from SPSS into R data sets keeping the user-defined missing values, merge data from different respondents and/or countries, generate variable dictionaries, modify data, produce descriptive statistics (percentages, means, percentiles, benchmarks) and multivariate statistics (correlations, linear regression, binary logistic regression). The number of supported studies and analysis types will increase in future. For a general presentation of the package, see Mirazchiyski', 2021a (<doi:10.1186/s40536-021-00114-4>). For detailed technical aspects of the package, see Mirazchiyski', 2021b (<doi:10.3390/psych3020018>).
This package provides a framework for estimating ensembles of meta-analytic, meta-regression, and multilevel models (assuming either presence or absence of the effect, heterogeneity, publication bias, and moderators). The RoBMA framework uses Bayesian model-averaging to combine the competing meta-analytic models into a model ensemble, weights the posterior parameter distributions based on posterior model probabilities and uses Bayes factors to test for the presence or absence of the individual components (e.g., effect vs. no effect; Bartoš et al., 2022, <doi:10.1002/jrsm.1594>; Maier, Bartoš & Wagenmakers, 2022, <doi:10.1037/met0000405>; Bartoš et al., 2025, <doi:10.1037/met0000737>). Users can define a wide range of prior distributions for the effect size, heterogeneity, publication bias (including selection models and PET-PEESE), and moderator components. The package provides convenient functions for summary, visualizations, and fit diagnostics.
Base-resolution copy number analysis of viral genome. Utilizes base-resolution read depth data over viral genome to find copy number segments with two-dimensional segmentation approach. Provides publish-ready figures, including histograms of read depths, coverage line plots over viral genome annotated with copy number change events and viral genes, and heatmaps showing multiple types of data with integrative clustering of samples.
An R package that tests for enrichment and depletion of user-defined pathways using a Fisher's exact test. The method is designed for versatile pathway annotation formats (eg. gmt, txt, xlsx) to allow the user to run pathway analysis on custom annotations. This package is also integrated with Cytoscape to provide network-based pathway visualization that enhances the interpretability of the results.
SimBu can be used to simulate bulk RNA-seq datasets with known cell type fractions. You can either use your own single-cell study for the simulation or the sfaira database. Different pre-defined simulation scenarios exist, as are options to run custom simulations. Additionally, expression values can be adapted by adding an mRNA bias, which produces more biologically relevant simulations.
This package defines interfaces from R to scvi-tools. A vignette works through the totalVI tutorial for analyzing CITE-seq data. Another vignette compares outputs of Chapter 12 of the OSCA book with analogous outputs based on totalVI quantifications. Future work will address other components of scvi-tools, with a focus on building understanding of probabilistic methods based on variational autoencoders.
The TMSig package contains tools to prepare, analyze, and visualize named lists of sets, with an emphasis on molecular signatures (such as gene or kinase sets). It includes fast, memory efficient functions to construct sparse incidence and similarity matrices and filter, cluster, invert, and decompose sets. Additionally, bubble heatmaps can be created to visualize the results of any differential or molecular signatures analysis.