Easy way to plot regular/weighted/conditional distributions by using formulas. The core of the package concerns distribution plots which are automatic: the many options are tailored to the data at hand to offer the nicest and most meaningful graphs possible -- with no/minimum user input. Further provide functions to plot conditional trends and box plots. See <https://lrberge.github.io/fplot/> for more information.
This package provides a framework and functions to create MOODLE quizzes. GIFTr takes dataframe of questions of four types: multiple choices, numerical, true or false and short answer questions, and exports a text file formatted in MOODLE GIFT format. You can prepare a spreadsheet in any software and import it into R to generate any number of questions with HTML', markdown and LaTeX
support.
It is an R package and web-based application, allowing users to perform interactive and reproducible visualizations of path diagrams for structural equation modeling (SEM) and networks using the ggplot2 engine. Its app (built with shiny') provides an interface that allows extensive customization, and creates CSV outputs, which can then be used to recreate the figures either using the web app or script-based workflow.
In high-dimensional settings: Estimate the number of distant spikes based on the Generalized Spiked Population (GSP) model. Estimate the population eigenvalues, angles between the sample and population eigenvectors, correlations between the sample and population PC scores, and the asymptotic shrinkage factors. Adjust the shrinkage bias in the predicted PC scores. Dey, R. and Lee, S. (2019) <doi:10.1016/j.jmva.2019.02.007>.
This package implements some item response models for multiple ratings, including the hierarchical rater model, conditional maximum likelihood estimation of linear logistic partial credit model and a wrapper function to the commercial FACETS program. See Robitzsch and Steinfeld (2018) for a description of the functionality of the package. See Wang, Su and Qiu (2014; <doi:10.1111/jedm.12045>) for an overview of modeling alternatives.
Knowledge space theory by Doignon and Falmagne (1999) <doi:10.1007/978-3-642-58625-5> is a set- and order-theoretical framework which proposes mathematical formalisms to operationalize knowledge structures in a particular domain. The kstIO
package provides basic functionalities to read and write KST data from/to files to be used together with the kst', kstMatrix
', CDSS', pks', or DAKS packages.
This package provides a suite of helper functions and a collection of datasets used in the book <https://uncovering-data-science.netlify.app>. It is designed to make data science techniques accessible to individuals with minimal coding experience. Inspired by an ancient Persian idiom, the package likens this learning process to "eating the liver of data science," symbolizing deep and immersive engagement with the field.
This package contains functions useful for debugging, set operations on vectors, and UTC date and time functionality. It adds a few vector manipulation verbs to purrr and dplyr packages. It can also generate an R file to install and update packages to simplify deployment into production. The functions were developed at the data science firm Numeract LLC and are used in several packages and projects.
It includes four methods: DCOL-based K-profiles clustering, non-linear network reconstruction, non-linear hierarchical clustering, and variable selection for generalized additive model. References: Tianwei Yu (2018)<DOI: 10.1002/sam.11381>; Haodong Liu and others (2016)<DOI: 10.1371/journal.pone.0158247>; Kai Wang and others (2015)<DOI: 10.1155/2015/918954>; Tianwei Yu and others (2010)<DOI: 10.1109/TCBB.2010.73>.
Different estimators are provided to solve the blind source separation problem for multivariate time series with stochastic volatility and supervised dimension reduction problem for multivariate time series. Different functions based on AMUSE and SOBI are also provided for estimating the dimension of the white noise subspace. The package is fully described in Nordhausen, Matilainen, Miettinen, Virta and Taskinen (2021) <doi:10.18637/jss.v098.i15>.
This package provides functions to compute Wasserstein barycenters of subset posteriors using the swapping algorithm developed by Puccetti, Rüschendorf and Vanduffel (2020) <doi:10.1016/j.jmaa.2017.02.003>. The Wasserstein barycenter is a geometric approach for combining subset posteriors. It allows for parallel and distributed computation of the posterior in case of complex models and/or big datasets, thereby increasing computational speed tremendously.
Generates both total- and level-specific R-squared measures from Rights and Sterbaâ s (2019) <doi:10.1037/met0000184> framework of R-squared measures for multilevel models with random intercepts and/or slopes, which is based on a complete decomposition of variance. Additionally generates graphical representations of these R-squared measures to allow visualizing and interpreting all measures in the framework together as an integrated set. This framework subsumes 10 previously-developed R-squared measures for multilevel models as special cases of 5 measures from the framework, and it also includes several newly-developed measures. Measures in the framework can be used to compute R-squared differences when comparing multilevel models (following procedures in Rights & Sterba (2020) <doi:10.1080/00273171.2019.1660605>). Bootstrapped confidence intervals can also be calculated. To use the confidence interval functionality, download bootmlm from <https://github.com/marklhc/bootmlm>.
This package provides functions for Posterior estimates of Accelerated Failure Time(AFT) model with MCMC and Maximum likelihood estimates of AFT model without MCMC for univariate and multivariate analysis in high dimensional gene expression data are available in this afthd package. AFT model with Bayesian framework for multivariate in high dimensional data has been proposed by Prabhash et al.(2016) <doi:10.21307/stattrans-2016-046>.
Align-GVGD ('A-GVGD') is a method to predict the impact of missense substitutions based on the properties of amino acid side chains and protein multiple sequence alignments <doi:10.1136/jmg.2005.033878>. A-GVGD is an extension of the original Grantham distance to multiple sequence alignments. This package provides an alternative R implementation to the web version found on <http://agvgd.hci.utah.edu/>.
Boldness-recalibration maximally spreads out probability predictions while maintaining a user specified level of calibration, facilitated the brcal()
function. Supporting functions to assess calibration via Bayesian and Frequentist approaches, Maximum Likelihood Estimator (MLE) recalibration, Linear in Log Odds (LLO)-adjust via any specified parameters, and visualize results are also provided. Methodological details can be found in Guthrie & Franck (2024) <doi:10.1080/00031305.2024.2339266>.
Compute covariate-adjusted specificity at controlled sensitivity level, or covariate-adjusted sensitivity at controlled specificity level, or covariate-adjust receiver operating characteristic curve, or covariate-adjusted thresholds at controlled sensitivity/specificity level. All statistics could also be computed for specific sub-populations given their covariate values. Methods are described in Ziyi Li, Yijian Huang, Datta Patil, Martin G. Sanda (2021+) "Covariate adjustment in continuous biomarker assessment".
Estimation of Markov generator matrices from discrete-time observations. The implemented approaches comprise diagonal and weighted adjustment of matrix logarithm based candidate solutions as in Israel (2001) <doi:10.1111/1467-9965.00114> as well as a quasi-optimization approach. Moreover, the expectation-maximization algorithm and the Gibbs sampling approach of Bladt and Sorensen (2005) <doi:10.1111/j.1467-9868.2005.00508.x> are included.
Fit Cox proportional hazards models containing both fixed and random effects. The random effects can have a general form, of which familial interactions (a "kinship" matrix) is a particular special case. Note that the simplest case of a mixed effects Cox model, i.e. a single random per-group intercept, is also called a "frailty" model. The approach is based on Ripatti and Palmgren, Biometrics 2002.
This package provides methods for reading, displaying, processing and writing files originally arranged for the DSSAT-CSM fixed width format. The DSSAT-CSM cropping system model is described at J.W. Jones, G. Hoogenboomb, C.H. Porter, K.J. Boote, W.D. Batchelor, L.A. Hunt, P.W. Wilkens, U. Singh, A.J. Gijsman, J.T. Ritchie (2003) <doi:10.1016/S1161-0301(02)00107-7>.
Various Expectation-Maximization (EM) algorithms are implemented for item response theory (IRT) models. The package includes IRT models for binary and ordinal responses, along with dynamic and hierarchical IRT models with binary responses. The latter two models are fitted using variational EM. The package also includes variational network and text scaling models. The algorithms are described in Imai, Lo, and Olmsted (2016) <DOI:10.1017/S000305541600037X>.
Flow of funds are financial accounts that are provided by Federal Reserve quarterly. The package contains all datasets <https://www.federalreserve.gov/datadownload/Choose.aspx?rel=z1>, tables <https://www.federalreserve.gov/apps/fof/FOFTables.aspx> and descriptions <https://www.federalreserve.gov/apps/fof/Guide/z1_tables_description.pdf> with functions to understand series <https://www.federalreserve.gov/apps/fof/SeriesStructure.aspx>
and explore them.
River hydrograph separation and daily runoff time series analysis. Provides various filters to separate baseflow and quickflow. Implements advanced separation technique by Rets et al. (2022) <doi:10.1134/S0097807822010146> which involves meteorological data to reveal genetic components of the runoff: ground, rain, thaw and spring (seasonal thaw). High-performance C++17 computation, annually aggregated variables, statistical testing and numerous plotting functions for high-quality visualization.
The gamma lasso algorithm provides regularization paths corresponding to a range of non-convex cost functions between L0 and L1 norms. As much as possible, usage for this package is analogous to that for the glmnet package (which does the same thing for penalization between L1 and L2 norms). For details see: Taddy (2017 JCGS), One-Step Estimator Paths for Concave Regularization', <arXiv:1308.5623>
.
Implementation of some unit and area level EBLUP estimators as well as the estimators of their MSE also under heteroscedasticity. The package further documents the publications Breidenbach and Astrup (2012) <DOI:10.1007/s10342-012-0596-7>, Breidenbach et al. (2016) <DOI:10.1016/j.rse.2015.07.026> and Breidenbach et al. (2018 in press). The vignette further explains the use of the implemented functions.