This package provides a simple interface to recursively list files from a directory, filter them using a regular expression, read their contents, and extract lines that match a user-defined pattern. The package returns a dataframe containing the matched lines, their line numbers, file paths, and the corresponding matched substrings. Designed for quick code base exploration, log inspection, or any use case involving pattern-based file and line filtering.
This package provides functions for simplified emulation of time series computer model output in model parameter space using Gaussian processes. Stilt can be used more generally for Kriging of spatio-temporal fields. There are functions to predict at new parameter settings, to test the emulator using cross-validation (which includes information on 95% confidence interval empirical coverage), and to produce contour plots over 2D slices in model parameter space.
Software that leverages the capabilities of Circos by manipulating data, preparing configuration files, and running the Perl-native Circos directly from the R environment with minimal user intervention. Circos is a novel software that addresses the challenges in visualizing genetic data by creating circular ideograms composed of tracks of heatmaps, scatter plots, line plots, histograms, links between common markers, glyphs, text, and etc. Please see <http://www.circos.ca>.
You can use the functions provided by the package to make various statistical tables, such as baseline data tables. Creates Table 1', i.e., a description of the baseline patient characteristics, which is essential in every medical research. Supports both continuous and categorical variables, as well as p-values and standardized mean differences. This method was described by Mary L McHugh (2013) <doi:10.11613/bm.2013.018>.
This package provides functions for accessing and manipulating data from Brazilian Institute of Geography and Statistics (IBGE)'s API SIDRA (acronym for IBGE System of Automatic Retrieval) from the new endpoints at <https://servicodados.ibge.gov.br/api/docs/agregados?versao=3>. Ferramentas para acessar e manipular dados via API do Sistema IBGE De Recuperação Automática SIDRA do Instituto Brasileiro de Geografia e Estatà stica (IBGE).
Imbalanced training datasets impede many popular classifiers. To balance training data, a combination of oversampling minority classes and undersampling majority classes is useful. This package implements the SCUT (SMOTE and Cluster-based Undersampling Technique) algorithm as described in Agrawal et. al. (2015) <doi:10.5220/0005595502260234>. Their paper uses model-based clustering and synthetic oversampling to balance multiclass training datasets, although other resampling methods are provided in this package.
Computes the solution path of the Terminating-LARS (T-LARS) algorithm. The T-LARS algorithm is a major building block of the T-Rex selector (see R package TRexSelector'). The package is based on the papers Machkour, Muma, and Palomar (2022) <arXiv:2110.06048>, Efron, Hastie, Johnstone, and Tibshirani (2004) <doi:10.1214/009053604000000067>, and Tibshirani (1996) <doi:10.1111/j.2517-6161.1996.tb02080.x>.
The best ANN structure for time series data analysis is a demanding need in the present era. This package will find the best-fitted ANN model based on forecasting accuracy. The optimum size of the hidden layers was also determined after determining the number of lags to be included. This package has been developed using the algorithm of Paul and Garai (2021) <doi:10.1007/s00500-021-06087-4>.
This package provides a suite of psychometric analysis tools for research and operation, including: (1) computation of probability, information, and likelihood for the 3PL, GPCM, and GRM; (2) parameter estimation using joint or marginal likelihood estimation method; (3) simulation of computerized adaptive testing using built-in or customized algorithms; (4) assembly and simulation of multistage testing. The full documentation and tutorials are at <https://github.com/xluo11/xxIRT>.
provides a functions for generating spectra libraries that can be used for MRM SRM MS workflows in proteomics. The package provides a BiblioSpec reader, a function which can add the protein information using a FASTA formatted amino acid file, and an export method for using the created library in the Spectronaut software. The package is developed, tested and used at the Functional Genomics Center Zurich <https://fgcz.ch>.
Gene-environment (GÃ E) interactions have important implications to elucidate the etiology of complex diseases beyond the main genetic and environmental effects. Outliers and data contamination in disease phenotypes of GÃ E studies have been commonly encountered, leading to the development of a broad spectrum of robust penalization methods. Nevertheless, within the Bayesian framework, the issue has not been taken care of in existing studies. We develop a robust Bayesian variable selection method for GÃ E interaction studies. The proposed Bayesian method can effectively accommodate heavy-tailed errors and outliers in the response variable while conducting variable selection by accounting for structural sparsity. In particular, the spike-and-slab priors have been imposed on both individual and group levels to identify important main and interaction effects. An efficient Gibbs sampler has been developed to facilitate fast computation. The Markov chain Monte Carlo algorithms of the proposed and alternative methods are efficiently implemented in C++.
Features tools for exploring congruent phylogenetic birth-death models. It can construct the pulled speciation- and net-diversification rates from a reference model. Given alternative speciation- or extinction rates, it can construct new models that are congruent with the reference model. Functionality is included to sample new rate functions, and to visualize the distribution of one congruence class. See also Louca & Pennell (2020) <doi:10.1038/s41586-020-2176-1>.
This package provides a framework is provided to develop R packages using Rust <https://www.rust-lang.org/> with minimal overhead, and more wrappers are easily added. Help is provided to use Cargo <https://doc.rust-lang.org/cargo/> in a manner consistent with CRAN policies. Rust code can also be embedded directly in an R script. The package is not official, affiliated with, nor endorsed by the Rust project.
This package provides time series regression models with one predictor using finite distributed lag models, polynomial (Almon) distributed lag models, geometric distributed lag models with Koyck transformation, and autoregressive distributed lag models. It also consists of functions for computation of h-step ahead forecasts from these models. See Demirhan (2020)(<doi:10.1371/journal.pone.0228812>) and Baltagi (2011)(<doi:10.1007/978-3-642-20059-5>) for more information.
R package to build and simulate deterministic compartmental models that can be non-Markovian. Length of stay in each compartment can be defined to follow a parametric distribution (d_exponential(), d_gamma(), d_weibull(), d_lognormal()) or a non-parametric distribution (nonparametric()). Other supported types of transition from one compartment to another includes fixed transition (constant()), multinomial (multinomial()), fixed transition probability (transprob()).
As in music, a fugue statistic repeats a theme in small variations. Here, the psi-function that defines an m-statistic is slightly altered to maintain the same design sensitivity in matched sets of different sizes. The main functions in the package are sen() and senCI(). For sensitivity analyses for m-statistics, see Rosenbaum (2007) Biometrics 63 456-464 <doi:10.1111/j.1541-0420.2006.00717.x>.
This package provides a comprehensive suite of functions and RStudio Add-ins leveraging the capabilities of open-source Large Language Models (LLMs) to support R developers. These functions offer a range of utilities, including text rewriting, translation, and general query capabilities. Additionally, the programming-focused functions provide assistance with debugging, translating, commenting, documenting, and unit testing code, as well as suggesting variable and function names, thereby streamlining the development process.
This package implements an efficient algorithm for fitting the entire regularization path of support vector machine models with elastic-net penalties using a generalized coordinate descent scheme. The framework also supports SCAD and MCP penalties. It is designed for high-dimensional datasets and emphasizes numerical accuracy and computational efficiency. This package implements the algorithms proposed in Tang, Q., Zhang, Y., & Wang, B. (2022) <https://openreview.net/pdf?id=RvwMTDYTOb>.
This package provides function to read data from the Igor Pro data analysis program by Wavemetrics'. The data formats supported are Igor packed experiment format ('pxp') and Igor binary wave ('ibw'). See: <https://www.wavemetrics.com/> for details. Also includes functions to load special pxp files produced by the Igor Pro Neuromatic and Nclamp packages for recording and analysing neuronal data. See <https://github.com/SilverLabUCL/NeuroMatic> for details.
This package provides a systematic biology tool was developed to identify dysregulated miRNAs via a miRNA-miRNA interaction network. IDMIR first constructed a weighted miRNA interaction network through integrating miRNA-target interaction information, molecular function data from Gene Ontology (GO) database and gene transcriptomic data in specific-disease context, and then, it used a network propagation algorithm on the network to identify significantly dysregulated miRNAs.
Computing and plotting joint confidence regions and intervals. Regions include classical ellipsoids, minimum-volume or minimum-length regions, and an empirical Bayes region. Intervals include the TOST procedure with ordinary or expanded intervals and a fixed-sequence procedure. Such regions and intervals are useful e.g., for the assessment of multi-parameter (bio-)equivalence. Joint confidence regions for the mean and variance of a normal distribution are available as well.
The reference implementation of model equations and default parameters for the toxicokinetic-toxicodynamic (TKTD) model of the Lemna (duckweed) aquatic plant. Lemna is a standard test macrophyte used in ecotox effect studies. The model was described and published by the SETAC Europe Interest Group Effect Modeling. It is a refined description of the Lemna TKTD model published by Schmitt et al. (2013) <doi:10.1016/j.ecolmodel.2013.01.017>.
Enables users to handle the dataset cleaning for conducting specific analyses with the log files from two international educational assessments: the Programme for International Student Assessment (PISA, <https://www.oecd.org/pisa/>) and the Programme for the International Assessment of Adult Competencies (PIAAC, <https://www.oecd.org/skills/piaac/>). An illustration of the analyses can be found on the LOGAN Shiny app (<https://loganpackage.shinyapps.io/shiny/>) on your browser.
This package provides a set of functions for analyzing the structure of forests based on the leaf area density (LAD) and leaf area index (LAI) measures calculated from Airborne Laser Scanning (ALS), i.e., scanning lidar (Light Detection and Ranging) data. The methodology is discussed and described in Almeida et al. (2019) <doi:10.3390/rs11010092> and Stark et al. (2012) <doi:10.1111/j.1461-0248.2012.01864.x>.