Three Shiny apps are provided that introduce Harvest Control Rules (HCR) for fisheries management. Introduction to HCRs provides a simple overview to how HCRs work. Users are able to select their own HCR and step through its performance, year by year. Biological variability and estimation uncertainty are introduced. Measuring performance builds on the previous app and introduces the idea of using performance indicators to measure HCR performance. Comparing performance allows multiple HCRs to be created and tested, and their performance compared so that the preferred HCR can be selected.
This package implements a modification to the Random Survival Forests algorithm for obtaining variable importance in high dimensional datasets. The proposed algorithm is appropriate for settings in which a silent event is observed through sequentially administered, error-prone self-reports or laboratory based diagnostic tests. The modified algorithm incorporates a formal likelihood framework that accommodates sequentially administered, error-prone self-reports or laboratory based diagnostic tests. The original Random Survival Forests algorithm is modified by the introduction of a new splitting criterion based on a likelihood ratio test statistic.
Three estimating equation methods are provided in this package for marginal analysis of longitudinal ordinal data with misclassified responses and covariates. The naive analysis which is solely based on the observed data without adjustment may lead to bias. The corrected generalized estimating equations (GEE2) method which is unbiased requires the misclassification parameters to be known beforehand. The corrected generalized estimating equations (GEE2) with validation subsample method estimates the misclassification parameters based on a given validation set. This package is an implementation of Chen (2013) <doi:10.1002/bimj.201200195>.
Calculate dissolved gas concentrations from raw MIMS (Membrane Inlet Mass Spectrometer) signal data. Use mimsy()
on a formatted CSV file to return dissolved gas concentrations (mg and microMole
) of N2, O2, Ar based on gas solubility at temperature, pressure, and salinity. See references Benson and Krause (1984), Garcia and Gordon (1992), Stull (1947), and Hamme and Emerson (2004) for more information. Easily save the output to a nicely-formatted multi-tab Excel workbook with mimsy.save()
. Supports dual-temperature standard calibration for dual-bath MIMS setups.
Three generalizations of the synthetic control method (which has already an implementation in package Synth') are implemented: first, MSCMT allows for using multiple outcome variables, second, time series can be supplied as economic predictors, and third, a well-defined cross-validation approach can be used. Much effort has been taken to make the implementation as stable as possible (including edge cases) without losing computational efficiency. A detailed description of the main algorithms is given in Becker and Klöà ner (2018) <doi:10.1016/j.ecosta.2017.08.002>.
This package provides functions to calculate estimates of intrinsic and extrinsic noise from the two-reporter single-cell experiment, as in Elowitz, M. B., A. J. Levine, E. D. Siggia, and P. S. Swain (2002) Stochastic gene expression in a single cell. Science, 297, 1183-1186. Functions implement multiple estimators developed for unbiasedness or min Mean Squared Error (MSE) in Fu, A. Q. and Pachter, L. (2016). Estimating intrinsic and extrinsic noise from single-cell gene expression measurements. Statistical Applications in Genetics and Molecular Biology, 15(6), 447-471.
Perform an exploration and a preliminary analysis on the dose- response relationship of nanomaterial toxicity. Several functions are provided for data exploration, including functions for creating a subset of dataset, frequency tables and plots. Inference for order restricted dose- response data is performed by testing the significance of monotonic dose-response relationship, using Williams, Marcus, M, Modified M and Likelihood ratio tests. Several methods of multiplicity adjustment are also provided. Description of the methods can be found in <https://github.com/rahmasarina/dose-response-analysis/blob/main/Methodology.pdf>.
Offers a gene-based meta-analysis test with filtering to detect gene-environment interactions (GxE
) with association data, proposed by Wang et al. (2018) <doi:10.1002/gepi.22115>. It first conducts a meta-filtering test to filter out unpromising SNPs by combining all samples in the consortia data. It then runs a test of omnibus-filtering-based GxE
meta-analysis (ofGEM
) that combines the strengths of the fixed- and random-effects meta-analysis with meta-filtering. It can also analyze data from multiple ethnic groups.
Generic interface for the PX-Web/PC-Axis API. The PX-Web/PC-Axis API is used by organizations such as Statistics Sweden and Statistics Finland to disseminate data. The R package can interact with all PX-Web/PC-Axis APIs to fetch information about the data hierarchy, extract metadata and extract and parse statistics to R data.frame format. PX-Web is a solution to disseminate PC-Axis data files in dynamic tables on the web. Since 2013 PX-Web contains an API to disseminate PC-Axis files.
This package performs elementary probability calculations on finite sample spaces, which may be represented by data frames or lists. This package is meant to rescue some widely used functions from the archived prob package (see <https://cran.r-project.org/src/contrib/Archive/prob/>). Functionality includes setting up sample spaces, counting tools, defining probability spaces, performing set algebra, calculating probability and conditional probability, tools for simulation and checking the law of large numbers, adding random variables, and finding marginal distributions. Characteristic functions for all base R distributions are included.
This package provides functions that provide statistical methods for interval-censored (grouped) data. The package supports the estimation of linear and linear mixed regression models with interval-censored dependent variables. Parameter estimates are obtained by a stochastic expectation maximization algorithm. Furthermore, the package enables the direct (without covariates) estimation of statistical indicators from interval-censored data via an iterative kernel density algorithm. Survey and Organisation for Economic Co-operation and Development (OECD) weights can be included into the direct estimation (see, Walter, P. (2019) <doi:10.17169/refubium-1621>).
Complex machine learning models are often hard to interpret. However, in many situations it is crucial to understand and explain why a model made a specific prediction. Shapley values is the only method for such prediction explanation framework with a solid theoretical foundation. Previously known methods for estimating the Shapley values do, however, assume feature independence. This package implements methods which accounts for any feature dependence, and thereby produces more accurate estimates of the true Shapley values. An accompanying Python wrapper ('shaprpy') is available through the GitHub
repository.
DEqMS
is developped on top of Limma. However, Limma assumes same prior variance for all genes. In proteomics, the accuracy of protein abundance estimates varies by the number of peptides/PSMs quantified in both label-free and labelled data. Proteins quantification by multiple peptides or PSMs are more accurate. DEqMS
package is able to estimate different prior variances for proteins quantified by different number of PSMs/peptides, therefore acchieving better accuracy. The package can be applied to analyze both label-free and labelled proteomics data.
This package provides a Bayesian hybrid approach for inferring Directed Acyclic Graphs (DAGs) for continuous, discrete, and mixed data. The algorithm can use the graph inferred by another more efficient graph inference method as input; the input graph may contain false edges or undirected edges but can help reduce the search space to a more manageable size. A Bayesian Markov chain Monte Carlo algorithm is then used to infer the probability of direction and absence for the edges in the network. References: Martin and Fu (2019) <arXiv:1909.10678>
.
Measure of agreement delta was originally by Martà n & Femia (2004) <DOI:10.1348/000711004849268>. Since then has been considered as agreement measure for different fields, since their behavior is usually better than the usual kappa index by Cohen (1960) <DOI:10.1177/001316446002000104>. The main issue with delta is that can not be computed by hand contrary to kappa. The current algorithm is based on the Version 5 of the delta windows program that can be found on <https://www.ugr.es/~bioest/software/delta/cmd.php?seccion=downloads>.
This package implements the method of Hofmeyr, D.P. (2021) <DOI:10.1109/TPAMI.2019.2930501> for fast evaluation of univariate kernel smoothers based on recursive computations. Applications to the basic problems of density and regression function estimation are provided, as well as some projection pursuit methods for which the objective is based on non-parametric functionals of the projected density, or conditional density of a response given projected covariates. The package is accompanied by an instructive paper in the Journal of Statistical Software <doi:10.18637/jss.v101.i03>.
Volume prediction is one of challenging task in forestry research. This package is a comprehensive toolset designed for the fitting and validation of various linear and nonlinear allometric equations (Linear, Log-Linear, Inverse, Quadratic, Cubic, Compound, Power and Exponential) used in the prediction of conifer tree volume. This package is particularly useful for forestry professionals, researchers, and resource managers engaged in assessing and estimating the volume of coniferous trees. This package has been developed using the algorithm of Sharma et al. (2017) <doi:10.13140/RG.2.2.33786.62407>.
Facilitates access to the International Union for Conservation of Nature (IUCN) Red List of Threatened Species, a comprehensive global inventory of species at risk of extinction. This package streamlines the process of determining conservation status by matching species names with Red List data, providing tools to easily query and retrieve conservation statuses. Designed to support biodiversity research and conservation planning, this package relies on data from the iucnrdata package, available on GitHub
<https://github.com/PaulESantos/iucnrdata>
. To install the data package, use pak::pak('PaulESantos/iucnrdata
').
Option is a one of the financial derivatives and its pricing is an important problem in practice. The process of stock prices are represented as Geometric Brownian motion [Black (1973) <doi:10.1086/260062>] or jump diffusion processes [Kou (2002) <doi:10.1287/mnsc.48.8.1086.166>]. In this package, algorithms and visualizations are implemented by Monte Carlo method in order to calculate European option price for three equations by Geometric Brownian motion and jump diffusion processes and furthermore a model that presents jumps among companies affect each other.
Latent group structures are a common challenge in panel data analysis. Disregarding group-level heterogeneity can introduce bias. Conversely, estimating individual coefficients for each cross-sectional unit is inefficient and may lead to high uncertainty. This package addresses the issue of unobservable group structures by implementing the pairwise adaptive group fused Lasso (PAGFL) by Mehrabani (2023) <doi:10.1016/j.jeconom.2022.12.002>. PAGFL identifies latent group structures and group-specific coefficients in a single step. On top of that, we extend the PAGFL to time-varying coefficient functions.
Convenient tools for exchanging files securely from within R. By encrypting the content safe passage of files (shipment) can be provided by common but insecure carriers such as ftp and email. Based on asymmetric cryptography no management of shared secrets is needed to make a secure shipment as long as authentic public keys are available. Public keys used for secure shipments may also be obtained from external providers as part of the overall process. Transportation of files will require that relevant services such as ftp and email servers are available.
Handling of behavioural data from the Ethoscope platform (Geissmann, Garcia Rodriguez, Beckwith, French, Jamasb and Gilestro (2017) <DOI:10.1371/journal.pbio.2003026>). Ethoscopes (<https://giorgiogilestro.notion.site/Ethoscope-User-Manual-a9739373ae9f4840aa45b277f2f0e3a7>) are an open source/open hardware framework made of interconnected raspberry pis (<https://www.raspberrypi.org>) designed to quantify the behaviour of multiple small animals in a distributed and real-time fashion. The default tracking algorithm records primary variables such as xy coordinates, dimensions and speed. This package is part of the rethomics framework <https://rethomics.github.io/>.
Comprehensive analysis and forecasting of univariate time series using automatic time series models of many kinds. Harvey AC (1989) <doi:10.1017/CBO9781107049994>. Pedregal DJ and Young PC (2002) <doi:10.1002/9780470996430>. Durbin J and Koopman SJ (2012) <doi:10.1093/acprof:oso/9780199641178.001.0001>. Hyndman RJ, Koehler AB, Ord JK, and Snyder RD (2008) <doi:10.1007/978-3-540-71918-2>. Gómez V, Maravall A (2000) <doi:10.1002/9781118032978>. Pedregal DJ, Trapero JR and Holgado E (2024) <doi:10.1016/j.ijforecast.2023.09.004>.
mastR
is an R package designed for automated screening of signatures of interest for specific research questions. The package is developed for generating refined lists of signature genes from multiple group comparisons based on the results from edgeR
and limma differential expression (DE) analysis workflow. It also takes into account the background noise of tissue-specificity, which is often ignored by other marker generation tools. This package is particularly useful for the identification of group markers in various biological and medical applications, including cancer research and developmental biology.