Restricted Cubic Splines were performed to explore the shape of association form of "U, inverted U, L" shape and test linearity or non-linearity base on "Cox,Logistic,linear,quasipoisson" regression, and auto output Restricted Cubic Splines figures. rcssci package could automatically draw RCS graphics with Y-axis "OR,HR,RR,beta". The Restricted Cubic Splines method were based on Suli Huang (2022) <doi:10.1016/j.ecoenv.2022.113183>,Amit Kaura (2019) <doi:10.1136/bmj.l6055>, and Harrell Jr (2015, ISBN:978-3-319-19424-0 (Print) 978-3-319-19425-7 (Online)).
This package provides a framework for the analysis and exploration of single-cell chromatin data. The Signac package contains functions for quantifying single-cell chromatin data, computing per-cell quality control metrics, dimension reduction and normalization, visualization, and DNA sequence motif analysis.
This package provides type-stable rolling window functions over any R data type. Cumulative and expanding windows are also supported. For more advanced usage, an index can be used as a secondary vector that defines how sliding windows are to be created.
This package provides a structured S4 approach to importing data files from the 10X pipelines. It mainly supports Single Cell Multiome ATAC + Gene Expression data among other data types. The main Bioconductor data representations used are SingleCellExperiment and RaggedExperiment.
Design primers for targeted single-cell RNA-seq used by TAP-seq. Create sequence templates for target gene panels and design gene-specific primers using Primer3. Potential off-targets can be estimated with BLAST. Requires working installations of Primer3 and BLASTn.
Lightweight validation tool for checking function arguments and validating data analysis scripts. This is an alternative to stopifnot() from the base package and to assert_that() from the assertthat package. It provides more informative error messages and facilitates debugging.
Causal discovery in linear structural equation models (Schultheiss, and Bühlmann (2023) <doi:10.1093/biomet/asad008>) and vector autoregressive models (Schultheiss, Ulmer, and Bühlmann (2025) <doi:10.1515/jci-2024-0011>) with explicit error control for false discovery, at least asymptotically.
This package provides WHO Child Growth Standards (z-scores) with confidence intervals and standard errors around the prevalence estimates, taking into account complex sample designs. More information on the methods is available online: <https://www.who.int/tools/child-growth-standards>.
Dose-response modeling for negative-binomial distributed data with a variety of dose-response models. Covariate adjustment and Bayesian model averaging is supported. Functions are provided to easily obtain inference on the dose-response relationship and plot the dose-response curve.
This package provides functions to produce some circular plots for circular data, in a height- or area-proportional manner. They include bar plots, smooth density plots, stacked dot plots, histograms, multi-class stacked smooth density plots, and multi-class stacked histograms.
This package provides a clustered random forest algorithm for fitting random forests for data of independent clusters, that exhibit within cluster dependence. Details of the method can be found in Young and Buehlmann (2025) <doi:10.48550/arXiv.2503.12634>.
This package provides functions for nonlinear regression parameters estimation by algorithms based on Controlled Random Search algorithm. Both functions (crs4hc(), crs4hce()) adapt current search strategy by four heuristics competition. In addition, crs4hce() improves adaptability by adaptive stopping condition.
Simplifies and automates the process of exploring and merging data from relational databases. This package allows users to discover table relationships, create a map of all possible joins, and generate executable plans to merge data based on a structured metadata framework.
Differential Analysis of short RNA transcripts that can be modeled by either Poisson or Negative binomial distribution. The statistical methodology implemented in this package is based on the random selection of references genes (Desaulle et al. (2021) <arXiv:2103.09872>).
This package contains published data sets for global benthic d18O data for 0-5.3 Myr <doi:10.1029/2004PA001071> and global sea levels based on marine sediment core data for 0-800 ka <doi:10.5194/cp-12-1-2016>.
Graceful ggplot'-based graphics and utility functions for working with generalized additive models (GAMs) fitted using the mgcv package. Provides a reimplementation of the plot() method for GAMs that mgcv provides, as well as tidyverse compatible representations of estimated smooths.
This package provides a tool to sensitivity analysis using SOBOL (Sobol, 1993) and AMA (Dell'Oca et al. 2017 <doi:10.5194/hess-21-6219-2017>) indices. It allows to identify the most sensitive parameter or parameters of a model.
Implementations of the treatment effect estimators for hybrid (self-selection) experiments, as developed by Brian J. Gaines and James H. Kuklinski, (2011), "Experimental Estimation of Heterogeneous Treatment Effects Related to Self-Selection," American Journal of Political Science 55(3): 724-736.
Generate multiple data sets for educational purposes to demonstrate the importance of multiple regression. The genset function generates a data set from an initial data set to have the same summary statistics (mean, median, and standard deviation) but opposing regression results.
Load polar volume and vertical profile data for aeroecological research directly into R. With getRad you can access data from several sources in Europe and the US and standardize it to facilitate further exploration in tools such as bioRad'.
Converts among many citation formats, including BibTeX', Citeproc', Codemeta', RDF XML', RIS', Schema.org', and Citation File Format'. A low level R6 class is provided, as well as stand-alone functions for each citation format for both read and write.
Estimate parameters of the hysteretic threshold autoregressive (HysTAR) model, using conditional least squares. In addition, you can generate time series data from the HysTAR model. For details, see Li, Guan, Li and Yu (2015) <doi:10.1093/biomet/asv017>.
Implementation of MCMC algorithms to estimate the Hierarchical Dirichlet Process Generalized Linear Model (hdpGLM) presented in the paper Ferrari (2020) Modeling Context-Dependent Latent Heterogeneity, Political Analysis <DOI:10.1017/pan.2019.13> and <doi:10.18637/jss.v107.i10>.
Estimation and diagnostic tools for instrumental variables designs, which implements the guidelines proposed in Lal et al. (2023) <arXiv:2303.11399>, including bootstrapped confidence intervals, effective F-statistic, Anderson-Rubin test, valid-t ratio test, and local-to-zero tests.