This package provides functions to compute the joint probability mass function (pmf), cumulative distribution function (cdf), and survival function (sf) of the Basu-Dhar bivariate geometric distribution. Additional functionalities include the calculation of the correlation coefficient, covariance, and cross-factorial moments, as well as the generation of random variates. The package also implements parameter estimation based on the method of moments.
This package provides classes (S4) of circular-linear, symmetric copulas with corresponding methods, extending the copula package. These copulas are especially useful for modeling correlation in discrete-time movement data. Methods for density, (conditional) distribution, random number generation, bivariate dependence measures and fitting parameters using maximum likelihood and other approaches. The package also contains methods for visualizing movement data and copulas.
This package provides the analysis of variance table including the expected mean squares (EMS) for various types of experimental design. When some variables are random effects or we use special experimental design such as nested design, repeated-measures design, or split-plot design, it is not easy to find the appropriate test, especially denominator for F-statistic which depends on EMS.
Classical (bottom-up and top-down), optimal combination and heuristic point (Di Fonzo and Girolimetto, 2023 <doi:10.1016/j.ijforecast.2021.08.004>) and probabilistic (Girolimetto et al. 2024 <doi:10.1016/j.ijforecast.2023.10.003>) forecast reconciliation procedures for linearly constrained time series (e.g., hierarchical or grouped time series) in cross-sectional, temporal, or cross-temporal frameworks.
Triangular and trapezoidal fuzzy numbers are used to study fuzzy logic, fuzzy reasoning and approximating, fuzzy regression models, etc. This package builds the generating function for triangular and trapezoidal fuzzy numbers based on Souliotis et al. (2022)<doi:10.3390/math10183350>. They proposed a method for the construction of fuzzy numbers via a cumulative distribution function based on the possibility theory.
Miscellaneous convenience functions and wrapper functions to convert frequencies between Hz, semitones, mel and Bark, to create a matrix of dummy columns from a factor, to determine whether x lies in range [a,b], and to add a bracketed line to an existing plot. This package also contains an example data set of a stratified sample of 80 talkers of Dutch.
This package performs a homogeneity analysis (multiple correspondence analysis) and various extensions. Rank restrictions on the category quantifications can be imposed (nonlinear PCA). The categories are transformed by means of optimal scaling with options for nominal, ordinal, and numerical scale levels (for rank-1 restrictions). Variables can be grouped into sets, in order to emulate regression analysis and canonical correlation analysis.
Select set of parametric and non-parametric statistical tests. inferr builds upon the solid set of statistical tests provided in stats package by including additional data types as inputs, expanding and restructuring the test results. The tests included are t tests, variance tests, proportion tests, chi square tests, Levene's test, McNemar Test, Cochran's Q test and Runs test.
Item response theory (IRT) parameter estimation using marginal maximum likelihood and expectation-maximization algorithm (Bock & Aitkin, 1981 <doi:10.1007/BF02293801>). Within parameter estimation algorithm, several methods for latent distribution estimation are available. Reflecting some features of the true latent distribution, these latent distribution estimation methods can possibly enhance the estimation accuracy and free the normality assumption on the latent distribution.
Modular implementation of Multiobjective Evolutionary Algorithms based on Decomposition (MOEA/D) [Zhang and Li (2007), <DOI:10.1109/TEVC.2007.892759>] for quick assembling and testing of new algorithmic components, as well as easy replication of published MOEA/D proposals. The full framework is documented in a paper published in the Journal of Statistical Software [<doi:10.18637/jss.v092.i06>].
Implementation of marginalized models for zero-inflated count data. This package provides a tool to implement an estimation algorithm for the marginalized count models, which directly makes inference on the effect of each covariate on the marginal mean of the outcome. The method involves the marginalized zero-inflated Poisson model described in Long et al. (2014) <doi:10.1002/sim.6293>.
This package provides tools from the domain of graph theory can be used to quantify the complexity and vulnerability to failure of a software package. That is the guiding philosophy of this package. pkgnet provides tools to analyze the dependencies between functions in an R package and between its imported packages. See the pkgnet website for vignettes and other supplementary information.
Bayesian variable selection for linear regression models using hierarchical priors. There is a prior that combines information across responses and one that combines information across covariates, as well as a standard spike and slab prior for comparison. An MCMC samples from the marginal posterior distribution for the 0-1 variables indicating if each covariate belongs to the model for each response.
This package provides the Fortran code of the R package spam with 64-bit integers. Loading this package together with the R package spam enables the sparse matrix class spam to handle huge sparse matrices with more than 2^31-1 non-zero elements. Documentation is provided in Gerber, Moesinger and Furrer (2017) <doi:10.1016/j.cageo.2016.11.015>.
Tipping point analysis for clinical trials that employ Bayesian dynamic borrowing via robust meta-analytic predictive (MAP) priors. Further functions facilitate expert elicitation of a primary weight of the informative component of the robust MAP prior and computation of operating characteristics. Intended use is the planning, analysis and interpretation of extrapolation studies in pediatric drug development, but applicability is generally wider.
Repo is a tool built on top of Git. Repo helps manage many Git repositories, does the uploads to revision control systems, and automates parts of the development workflow. Repo is not meant to replace Git, only to make it easier to work with Git. The repo command is an executable Python script that you can put anywhere in your path.
Collection of methods for rating matrix completion, which is a statistical framework for recommender systems. Another relevant application is the imputation of rating-scale survey data in the social and behavioral sciences. Note that matrix completion and imputation are synonymous terms used in different streams of the literature. The main functionality implements robust matrix completion for discrete rating-scale data with a low-rank constraint on a latent continuous matrix (Archimbaud, Alfons, and Wilms (2025) <doi:10.48550/arXiv.2412.20802>). In addition, the package provides wrapper functions for softImpute (Mazumder, Hastie, and Tibshirani, 2010, <https://www.jmlr.org/papers/v11/mazumder10a.html>; Hastie, Mazumder, Lee, Zadeh, 2015, <https://www.jmlr.org/papers/v16/hastie15a.html>) for easy tuning of the regularization parameter, as well as benchmark methods such as median imputation and mode imputation.
The functions in this package compute robust estimators by minimizing a kernel-based distance known as MMD (Maximum Mean Discrepancy) between the sample and a statistical model. Recent works proved that these estimators enjoy a universal consistency property, and are extremely robust to outliers. Various optimization algorithms are implemented: stochastic gradient is available for most models, but the package also allows gradient descent in a few models for which an exact formula is available for the gradient. In terms of distribution fit, a large number of continuous and discrete distributions are available: Gaussian, exponential, uniform, gamma, Poisson, geometric, etc. In terms of regression, the models available are: linear, logistic, gamma, beta and Poisson. Alquier, P. and Gerber, M. (2024) <doi:10.1093/biomet/asad031> Cherief-Abdellatif, B.-E. and Alquier, P. (2022) <doi:10.3150/21-BEJ1338>.
This package implements two methods of estimating runs scored in a softball scenario: (1) theoretical expectation using discrete Markov chains and (2) empirical distribution using multinomial random simulation. Scores are based on player-specific input probabilities (out, single, double, triple, walk, and homerun). Optional inputs include probability of attempting a steal, probability of succeeding in an attempted steal, and an indicator of whether a player is "fast" (e.g. the player could stretch home). These probabilities may be calculated from common player statistics that are publicly available on team's webpages. Scores are evaluated based on a nine-player lineup and may be used to compare lineups, evaluate base scenarios, and compare the offensive potential of individual players. Manuscript forthcoming. See Bukiet & Harold (1997) <doi:10.1287/opre.45.1.14> for implementation of discrete Markov chains.
This package provides tools to get text from images of text using Abbyy Cloud Optical Character Recognition (OCR) API. With abbyyyR, one can easily OCR images, barcodes, forms, documents with machine readable zones, e.g. passports and get the results in a variety of formats including plain text and XML. To learn more about the Abbyy OCR API, see http://ocrsdk.com/.
This package provides infrastructure for the management of survey data including value labels, definable missing values, recoding of variables, production of code books, and import of (subsets of) SPSS and Stata files is provided. Further, the package produces tables and data frames of arbitrary descriptive statistics and (almost) publication-ready tables of regression model estimates, which can be exported to LaTeX and HTML.
This package provides tool for estimation, testing and regression modeling of subdistribution functions in competing risks, as described in Gray (1988), A class of K-sample tests for comparing the cumulative incidence of a competing risk, Ann. Stat. 16:1141-1154, and Fine JP and Gray RJ (1999), A proportional hazards model for the subdistribution of a competing risk, JASA, 94:496-509.
GNOSIS incorporates a range of R packages enabling users to efficiently explore and visualise clinical and genomic data obtained from cBioPortal. GNOSIS uses an intuitive GUI and multiple tab panels supporting a range of functionalities. These include data upload and initial exploration, data recoding and subsetting, multiple visualisations, survival analysis, statistical analysis and mutation analysis, in addition to facilitating reproducible research.
ATPOL is a rectangular grid system used for botanical studies in Poland. The ATPOL grid was developed in Institute of Botany, Jagiellonian University, Krakow, Poland in 70. Since then it is widely used to represent distribution of plants in Poland. atpolR provides functions to translate geographic coordinates to the grid and vice versa. It also allows to create a choreograph map.