GitHub apps provide a powerful way to manage fine grained programmatic access to specific git repositories, without having to create dummy users, and which are safer than a personal access token for automated tasks. This package extends the gh package to let you authenticate and interact with GitHub <https://docs.github.com/en/rest/overview> in R as an app.
SQL back-end to dplyr for Apache Impala, the massively parallel processing query engine for Apache Hadoop'. Impala enables low-latency SQL queries on data stored in the Hadoop Distributed File System (HDFS)', Apache HBase', Apache Kudu', Amazon Simple Storage Service (S3)', Microsoft Azure Data Lake Store (ADLS)', and Dell EMC Isilon'. See <https://impala.apache.org> for more information about Impala.
This package provides a key-value store data structure. The keys are integers and the values can be any R object. This is like a list but indexed by a set of integers, not necessarily contiguous and possibly negative. The implementation uses a R6 class. These containers are not faster than lists but their usage can be more convenient for certain situations.
Computes and decomposes Gini, Bonferroni and Zenga 2007 point and synthetic concentration indexes. Decompositions are intended: by sources, by subpopulations and by sources and subpopulations jointly. References, Zenga M. M.(2007) <doi:10.1400/209575> Zenga M. (2015) <doi:10.1400/246627> Zenga M., Valli I. (2017) <doi:10.26350/999999_000005> Zenga M., Valli I. (2018) <doi:10.26350/999999_000011>.
The goal of LCMSQA is to make it easy to check the quality of liquid chromatograph/mass spectrometry (LC/MS) experiments using a shiny application. This package provides interactive data visualizations for quality control (QC) samples, including total ion current chromatogram (TIC), base peak chromatogram (BPC), mass spectrum, extracted ion chromatogram (XIC), and feature detection results from internal standards or known metabolites.
It contains the function to apply MARMoT balancing technique discussed in: Silan, Boccuzzo, Arpino (2021) <DOI:10.1002/sim.9192>, Silan, Belloni, Boccuzzo, (2023) <DOI:10.1007/s10260-023-00695-0>; furthermore it contains a function for computing the Deloof's approximation of the average rank (and also a parallelized version) and a function to compute the Absolute Standardized Bias.
This package provides a set of utility functions for analysing and modelling data from continuous report short-term memory experiments using either the 2-component mixture model of Zhang and Luck (2008) <doi:10.1038/nature06860> or the 3-component mixture model of Bays et al. (2009) <doi:10.1167/9.10.7>. Users are also able to simulate from these models.
This package provides a HTML widget rendering the Monaco editor. The Monaco editor is the code editor which powers VS Code'. It is particularly well developed for JavaScript'. In addition to the built-in features of the Monaco editor, the widget allows to prettify multiple languages, to view the HTML rendering of Markdown code, and to view and resize SVG images.
Inbreeding-purging analysis of pedigreed populations, including the computation of the inbreeding coefficient, partial, ancestral and purged inbreeding coefficients, and measures of the opportunity of purging related to the individual reduction of inbreeding load. In addition, functions to calculate the effective population size and other parameters relevant to population genetics are included. See López-Cortegano E. (2021) <doi:10.1093/bioinformatics/btab599>.
This package provides a number of functions to simplify and automate the scoring, comparison, and evaluation of different ways of creating composites of data. It is particularly aimed at facilitating the creation of physiological composites of metabolic syndrome symptom score (MetSSS) and allostatic load (AL). Provides a wrapper to calculate the MetSSS on new data using the Healthy Hearts formula.
Supports analysis of aerobiological data. Available features include determination of pollen season limits, replacement of outliers (Kasprzyk and Walanus (2014) <doi:10.1007/s10453-014-9332-8>), calculation of growing degree days (Baskerville and Emin (1969) <doi:10.2307/1933912>), and determination of the base temperature for growing degree days (Yang et al. (1995) <doi:10.1016/0168-1923(94)02185-M).
This package implements several functions for the analysis of semantic networks including different network estimation algorithms, partial node bootstrapping (Kenett, Anaki, & Faust, 2014 <doi:10.3389/fnhum.2014.00407>), random walk simulation (Kenett & Austerweil, 2016 <http://alab.psych.wisc.edu/papers/files/Kenett16CreativityRW.pdf>), and a function to compute global network measures. Significance tests and plotting features are also implemented.
This package provides tools for analyzing tail dependence in any sample or in particular theoretical models. The package uses only theoretical and non parametric methods, without inference. The primary goals of the package are to provide: (a)symmetric multivariate extreme value models in any dimension; theoretical and empirical indices to order tail dependence; theoretical and empirical graphical methods to visualize tail dependence.
This package provides a toolkit for Partially Observed Markov Decision Processes (POMDP). Provides bindings to C++ libraries implementing the algorithm SARSOP (Successive Approximations of the Reachable Space under Optimal Policies) and described in Kurniawati et al (2008), <doi:10.15607/RSS.2008.IV.009>. This package also provides a high-level interface for generating, solving and simulating POMDP problems and their solutions.
This package implements statistical inference for systems of ordinary differential equations, that uses the integral-matching criterion and takes advantage of the separability of parameters, in order to obtain initial parameter estimates for nonlinear least squares optimization. Dattner & Yaari (2018) <arXiv:1807.04202>. Dattner et al. (2017) <doi:10.1098/rsif.2016.0525>. Dattner & Klaassen (2015) <doi:10.1214/15-EJS1053>.
Palettes generated from Tintin covers. There is one palette per cover, with a total of 24 palettes of 5 colours each. Includes functions to interpolate colors in order to create more colors based on the provided palettes.The data is based on Cyr, et al. (2004) <doi:10.1503/cmaj.1041405> and Wikipedia <https://en.wikipedia.org/wiki/The_Adventures_of_Tintin>.
Handling and manipulation polygons, coordinates, and other geographical objects. The tools include: polygon areas, barycentric and trilinear coordinates (Hormann and Floater, 2006, <doi:10.1145/1183287.1183295>), convex hull for polygons (Graham and Yao, 1983, <doi:10.1016/0196-6774(83)90013-5>), polygon triangulation (Toussaint, 1991, <doi:10.1007/BF01905693>), great circle and geodesic distances, Hausdorff distance, and reduced major axis.
Multinomial (inverse) regression inference for text documents and associated attributes. For details see: Taddy (2013 JASA) Multinomial Inverse Regression for Text Analysis <arXiv:1012.2098> and Taddy (2015, AoAS), Distributed Multinomial Regression, <arXiv:1311.6139>. A minimalist partial least squares routine is also included. Note that the topic modeling capability of earlier textir is now a separate package, maptpx'.
Feature selection using Sequential Forward Floating feature Selection and Jeffries-Matusita distance. It returns a suboptimal set of features to use for image classification. Reference: Dalponte, M., Oerka, H.O., Gobakken, T., Gianelle, D. & Naesset, E. (2013). Tree Species Classification in Boreal Forests With Hyperspectral Data. IEEE Transactions on Geoscience and Remote Sensing, 51, 2632-2645, <DOI:10.1109/TGRS.2012.2216272>.
Implementation of various spirometry equations in R, currently the GLI-2012 (Global Lung Initiative; Quanjer et al. 2012 <doi:10.1183/09031936.00080312>), the race-neutral GLI global 2022 (Global Lung Initiative; Bowerman et al. 2023 <doi:10.1164/rccm.202205-0963OC>), the NHANES3 (National Health and Nutrition Examination Survey; Hankinson et al. 1999 <doi:10.1164/ajrccm.159.1.9712108>) and the JRS 2014 (Japanese Respiratory Society; Kubota et al. 2014 <doi:10.1016/j.resinv.2014.03.003>) equations. Also the GLI-2017 diffusing capacity equations <doi:10.1183/13993003.00010-2017> are implemented. Contains user-friendly functions to calculate predicted and LLN (Lower Limit of Normal) values for different spirometric parameters such as FEV1 (Forced Expiratory Volume in 1 second), FVC (Forced Vital Capacity), etc, and to convert absolute spirometry measurements to percent (%) predicted and z-scores.
HiCool provides an R interface to process and normalize Hi-C paired-end fastq reads into .(m)cool files. .(m)cool is a compact, indexed HDF5 file format specifically tailored for efficiently storing HiC-based data. On top of processing fastq reads, HiCool provides a convenient reporting function to generate shareable reports summarizing Hi-C experiments and including quality controls.
This is a package for fast image processing for images in up to 4 dimensions (two spatial dimensions, one time/depth dimension, one color dimension). It provides most traditional image processing tools (filtering, morphology, transformations, etc.) as well as various functions for easily analyzing image data using R. The package wraps CImg, a simple, modern C++ library for image processing.
Facilitates writing computationally reproducible student theses in PDF format that conform to the American Psychological Association (APA) manuscript guidelines (6th Edition). The package currently provides two R Markdown templates for homework and theses at the Psychology Department of the University of Cologne. The package builds on the package papaja but is tailored to the requirements of student theses and omits features for simplicity.
Quantile regression with fixed effects solves longitudinal data, considering the individual intercepts as fixed effects. The parametric set of this type of problem used to be huge. Thus penalized methods such as Lasso are currently applied. Adaptive Lasso presents oracle proprieties, which include Gaussianity and correct model selection. Bayesian information criteria (BIC) estimates the optimal tuning parameter lambda. Plot tools are also available.