This package provides a variety of functions to analyze and model geostatistical count data with Gaussian copulas, including 1) data simulation and visualization; 2) correlation structure assessment (here also known as the Normal To Anything); 3) calculate multivariate normal rectangle probabilities; 4) likelihood inference and parallel prediction at predictive locations. Description of the method is available from: Han and DeOliveira (2018) <doi:10.18637/jss.v087.i13>.
This package provides a grammar of graphics approach for visualizing summary statistics from multiple Genome-wide Association Studies (GWAS). It offers geneticists, bioinformaticians, and researchers a powerful yet flexible tool for illustrating complex genetic associations using data from various GWAS datasets. The visualizations can be extensively customized, facilitating detailed comparative analysis across different genetic studies. Reference: Uffelmann, E. et al. (2021) <doi:10.1038/s43586-021-00056-9>.
This package provides a Kriging method for functional datasets with spatial dependency. This functional Kriging method avoids the need to estimate the trace-variogram, and the curve is estimated by minimizing a quadratic form. The curves in the functional dataset are smoothed using Fourier series. The functional Kriging of this package is a modification of the method proposed by Giraldo (2011) <doi:10.1007/s10651-010-0143-y>.
This package provides tools for assessing and diagnosing convergence of Markov Chain Monte Carlo simulations, as well as for graphically display results from full MCMC analysis. The package also facilitates the graphical interpretation of models by providing flexible functions to plot the results against observed variables, and functions to work with hierarchical/multilevel batches of parameters (Fernández-i-Marà n, 2016 <doi:10.18637/jss.v070.i09>).
R function gawdis() produces multi-trait dissimilarity with more uniform contributions of different traits. de Bello et al. (2021) <doi:10.1111/2041-210X.13537> presented the approach based on minimizing the differences in the correlation between the dissimilarity of each trait, or groups of traits, and the multi-trait dissimilarity. This is done using either an analytic or a numerical solution, both available in the function.
Sequential strategies for finding a game equilibrium are proposed in a black-box setting (expensive pay-off evaluations, no derivatives). The algorithm handles noiseless or noisy evaluations. Two acquisition functions are available. Graphical outputs can be generated automatically. V. Picheny, M. Binois, A. Habbal (2018) <doi:10.1007/s10898-018-0688-0>. M. Binois, V. Picheny, P. Taillandier, A. Habbal (2020) <doi:10.48550/arXiv.1902.06565>.
This package provides a set of functions to run simple and composite box-models to describe the dynamic or static distribution of stable isotopes in open or closed systems. The package also allows the sweeping of many parameters in both static and dynamic conditions. The mathematical models used in this package are derived from Albarede, 1995, Introduction to Geochemical Modelling, Cambridge University Press, Cambridge <doi:10.1017/CBO9780511622960>.
The IntCal20 radiocarbon calibration curves (Reimer et al. 2020 <doi:10.1017/RDC.2020.68>) are provided here in a single data package, together with previous IntCal curves (IntCal13, IntCal09, IntCal04, IntCal98) and postbomb curves. Also provided are functions to copy the curves into memory, and to plot the curves and their underlying data, as well as functions to calibrate radiocarbon dates.
This package provides functions that allow for convenient working with vector space models of semantics/distributional semantic models/word embeddings. Originally built for LSA models (hence the name), but can be used for all such vector-based models. For actually building a vector semantic space, use the package lsa or other specialized software. Downloadable semantic spaces can be found at <https://sites.google.com/site/fritzgntr/software-resources>.
This package provides a lasso-based method for building mechanistic models using the SAMBA algorithm (Stochastic Approximation for Model Building Algorithm) (M Prague, M Lavielle (2022) <doi:10.1002/psp4.12742>). The package extends the Rsmlx package (version 2024.1.0) to better handle high-dimensional data. It relies on the Monolix software (version 2024R1; see (<https://monolixsuite.slp-software.com/monolix/2024R1/>), which must be installed beforehand.
This package provides a collection of tools for interactive manipulation of (spatial) data layers on leaflet web maps. Tools include editing of existing layers, creation of new layers through drawing of shapes (points, lines, polygons), deletion of shapes as well as cutting holes into existing shapes. Provides control over options to e.g. prevent self-intersection of polygons and lines or to enable/disable snapping to align shapes.
Estimate Multidimensional Poverty Indices disaggregated by population subgroups based on the Alkire and Foster method (2011) <doi:10.1016/j.jpubeco.2010.11.006>. This includes the calculation of standard errors and confidence intervals. Other partial indices such as incidence, intensity and indicator-specific measures as well as intertemporal changes analysis can also be estimated. The standard errors and confidence intervals are calculated considering the complex survey design.
Estimate genetic linkage maps for markers on a single chromosome (or in a single linkage group) from pairwise recombination fractions or intermarker distances using weighted metric multidimensional scaling. The methods are suitable for autotetraploid as well as diploid populations. Options for assessing the fit to a known map are also provided. Methods are discussed in detail in Preedy and Hackett (2016) <doi:10.1007/s00122-016-2761-8>.
Basic functions to fit and predict periodic autoregressive time series models. These models are discussed in the book P.H. Franses (1996) "Periodicity and Stochastic Trends in Economic Time Series", Oxford University Press. Data set analyzed in that book is also provided. NOTE: the package was orphaned during several years. It is now only maintained, but no major enhancements are expected, and the maintainer cannot provide any support.
This package performs genomic prediction of hybrid performance using eight statistical methods including GBLUP, BayesB, RKHS, PLS, LASSO, EN, LightGBM and XGBoost along with additive and additive-dominance models. Users are able to incorporate parental phenotypic information in all methods based on their specific needs. (Xu S et al(2017) <doi:10.1534/g3.116.038059>; Xu Y et al (2021) <doi: 10.1111/pbi.13458>).
This package provides a collection of functions for modelling mutations in pedigrees with marker data, as used e.g. in likelihood computations with microsatellite data. Implemented models include equal, proportional and stepwise models, as well as random models for experimental work, and custom models allowing the user to apply any valid mutation matrix. Allele lumping is done following the lumpability criteria of Kemeny and Snell (1976), ISBN:0387901922.
The base R data.frame, like any vector, is copied upon modification. This behavior is at odds with that of GUIs and interactive graphics. To rectify this, plumbr provides a mutable, dynamic tabular data model. Models may be chained together to form the complex plumbing necessary for sophisticated graphical interfaces. Also included is a general framework for linking datasets; an typical use case would be a linked brush.
Designed for prediction error estimation through resampling techniques, possibly accelerated by parallel execution on a compute cluster. Newly developed model fitting routines can be easily incorporated. Methods used in the package are detailed in Porzelius Ch., Binder H. and Schumacher M. (2009) <doi:10.1093/bioinformatics/btp062> and were used, for instance, in Porzelius Ch., Schumacher M. and Binder H. (2011) <doi:10.1007/s00180-011-0236-6>.
An efficient tool designed for differential analysis of large-scale RNA sequencing (RNAseq) data and Bisulfite sequencing (BSseq) data in the presence of individual relatedness and population structure. PQLseq first fits a Generalized Linear Mixed Model (GLMM) with adjusted covariates, predictor of interest and random effects to account for population structure and individual relatedness, and then performs Wald tests for each gene in RNAseq or site in BSseq.
This package provides functions for interacting directly with the Quandl API to offer data in a number of formats usable in R, downloading a zip with all data from a Quandl database, and the ability to search. This R package uses the Quandl API. For more information go to <https://docs.quandl.com>. For more help on the package itself go to <https://www.quandl.com/tools/r>.
This package provides functionality for working with tensors, alternating forms, wedge products, Stokes's theorem, and related concepts from the exterior calculus. Uses disordR discipline (Hankin, 2022, <doi:10.48550/arXiv.2210.03856>). The canonical reference would be M. Spivak (1965, ISBN:0-8053-9021-9) "Calculus on Manifolds". To cite the package in publications please use Hankin (2022) <doi:10.48550/arXiv.2210.17008>.
This package provides a tidy-style interface for applying differential privacy to data frames. Provides pipe-friendly functions to add calibrated noise, compute private statistics, and track privacy budgets using the epsilon-delta differential privacy framework. Implements the Laplace mechanism (Dwork et al. 2006 <doi:10.1007/11681878_14>) and the Gaussian mechanism for achieving differential privacy as described in Dwork and Roth (2014) <doi:10.1561/0400000042>.
This package creates square pie charts also known as waffle charts. These can be used to communicate parts of a whole for categorical quantities. To emulate the percentage view of a pie chart, a 10x10 grid should be used. In this way each square is representing 1% of the total. Waffle provides tools to create charts as well as stitch them together. Isotype pictograms can be made by using glyphs.
The R package dmGsea provides efficient gene set enrichment analysis specifically for DNA methylation data. It addresses key biases, including probe dependency and varying probe numbers per gene. The package supports Illumina 450K, EPIC, and mouse methylation arrays. Users can also apply it to other omics data by supplying custom probe-to-gene mapping annotations. dmGsea is flexible, fast, and well-suited for large-scale epigenomic studies.