Additive proportional odds model for ordinal data using Laplace P-splines. The combination of Laplace approximations and P-splines enable fast and flexible inference in a Bayesian framework. Specific approximations are proposed to account for the asymmetry in the marginal posterior distributions of non-penalized parameters. For more details, see Lambert and Gressani (2023) <doi:10.1177/1471082X231181173> ; Preprint: <arXiv:2210.01668>
).
Tool for producing Pen's parade graphs, useful for visualizing inequalities in income, wages or other variables, as proposed by Pen (1971, ISBN: 978-0140212594). Income or another economic variable is captured by the vertical axis, while the population is arranged in ascending order of income along the horizontal axis. Pen's income parades provide an easy-to-interpret visualization of economic inequalities.
This package provides tools for modeling non-continuous linear responses of ecological communities to environmental data. The package is straightforward through three steps: (1) data ordering (function OrdData()
), (2) split-moving-window analysis (function SMW()
) and (3) piecewise redundancy analysis (function pwRDA()
). Relevant references include Cornelius and Reynolds (1991) <doi:10.2307/1941559> and Legendre and Legendre (2012, ISBN: 9780444538697).
This package provides functions to perform split robust least angle regression. The approach first uses the least angle regression algorithm to split the variables into the models of an ensemble and robust estimates of the correlation between predictors. An elastic net estimator is then applied to the selected predictors in each model using the imputed data from the detect deviating cell (DDC) method.
This package provides functions for defining and conducting a time series prediction process including pre(post)processing, decomposition, modelling, prediction and accuracy assessment. The generated models and its yielded prediction errors can be used for benchmarking other time series prediction methods and for creating a demand for the refinement of such methods. For this purpose, benchmark data from prediction competitions may be used.
This package provides a Tcl/Tk Graphical User Interface (GUI) to display images than can be zoomed and panned using the mouse and keyboard shortcuts. tkImgR
read and write different image formats (PPM/PGM, PNG and GIF) using the standard Tcl/Tk distribution (>=8.6), but other formats (JPEG, TIFF, CR2) can be handled using the tkImg
package for Tcl/Tk'.
This package infers the V genotype of an individual from immunoglobulin (Ig) repertoire sequencing data (AIRR-Seq, Rep-Seq). Includes detection of any novel alleles. This information is then used to correct existing V allele calls from among the sample sequences. Citations: Gadala-Maria, et al (2015) <doi:10.1073/pnas.1417683112>, Gadala-Maria, et al (2019) <doi:10.3389/fimmu.2019.00129>.
The vcfpp.h (<https://github.com/Zilong-Li/vcfpp>) provides an easy-to-use C++ API of htslib', offering full functionality for manipulating Variant Call Format (VCF) files. The vcfppR
package serves as the R bindings of the vcfpp.h library, enabling rapid processing of both compressed and uncompressed VCF files. Explore a range of powerful features for efficient VCF data manipulation.
An implementation of three procedures developed by John Tukey: FUNOP (FUll NOrmal Plot), FUNOR-FUNOM (FUll NOrmal Rejection-FUll NOrmal Modification), and vacuum cleaner. Combined, they provide a way to identify, treat, and analyze outliers in two-way (i.e., contingency) tables, as described in his landmark paper "The Future of Data Analysis", Tukey, John W. (1962) <https://www.jstor.org/stable/2237638>.
HiCool
provides an R interface to process and normalize Hi-C paired-end fastq reads into .(m)cool files. .(m)cool is a compact, indexed HDF5 file format specifically tailored for efficiently storing HiC-based
data. On top of processing fastq reads, HiCool
provides a convenient reporting function to generate shareable reports summarizing Hi-C experiments and including quality controls.
This package provides tools to get text from images of text using Abbyy Cloud Optical Character Recognition (OCR) API. With abbyyyR, one can easily OCR images, barcodes, forms, documents with machine readable zones, e.g. passports and get the results in a variety of formats including plain text and XML. To learn more about the Abbyy OCR API, see http://ocrsdk.com/.
This package provides infrastructure for the management of survey data including value labels, definable missing values, recoding of variables, production of code books, and import of (subsets of) SPSS and Stata files is provided. Further, the package produces tables and data frames of arbitrary descriptive statistics and (almost) publication-ready tables of regression model estimates, which can be exported to LaTeX and HTML.
This package provides tool for estimation, testing and regression modeling of subdistribution functions in competing risks, as described in Gray (1988), A class of K-sample tests for comparing the cumulative incidence of a competing risk, Ann. Stat. 16:1141-1154, and Fine JP and Gray RJ (1999), A proportional hazards model for the subdistribution of a competing risk, JASA, 94:496-509.
uom
(Units of measurement) is a crate that does automatic type-safe zero-cost dimensional analysis. You can create your own systems or use the pre-built International System of Units (SI) which is based on the International System of Quantities (ISQ) and includes numerous quantities (length, mass, time, ...) with conversion factors for even more numerous measurement units (meter, kilometer, foot, mile, ...).
uom
(Units of measurement) is a crate that does automatic type-safe zero-cost dimensional analysis. You can create your own systems or use the pre-built International System of Units (SI) which is based on the International System of Quantities (ISQ) and includes numerous quantities (length, mass, time, ...) with conversion factors for even more numerous measurement units (meter, kilometer, foot, mile, ...).
uom
(Units of measurement) is a crate that does automatic type-safe zero-cost dimensional analysis. You can create your own systems or use the pre-built International System of Units (SI) which is based on the International System of Quantities (ISQ) and includes numerous quantities (length, mass, time, ...) with conversion factors for even more numerous measurement units (meter, kilometer, foot, mile, ...).
Implementation of various spirometry equations in R, currently the GLI-2012 (Global Lung Initiative; Quanjer et al. 2012 <doi:10.1183/09031936.00080312>), the race-neutral GLI global 2022 (Global Lung Initiative; Bowerman et al. 2023 <doi:10.1164/rccm.202205-0963OC>), the NHANES3 (National Health and Nutrition Examination Survey; Hankinson et al. 1999 <doi:10.1164/ajrccm.159.1.9712108>) and the JRS 2014 (Japanese Respiratory Society; Kubota et al. 2014 <doi:10.1016/j.resinv.2014.03.003>) equations. Also the GLI-2017 diffusing capacity equations <doi:10.1183/13993003.00010-2017> are implemented. Contains user-friendly functions to calculate predicted and LLN (Lower Limit of Normal) values for different spirometric parameters such as FEV1 (Forced Expiratory Volume in 1 second), FVC (Forced Vital Capacity), etc, and to convert absolute spirometry measurements to percent (%) predicted and z-scores.
For a binary classification the adjusted sensitivity and specificity are measured for a given fixed threshold. If the threshold for either sensitivity or specificity is not given, the crossing point between the sensitivity and specificity curves are returned. For bootstrap procedures, mean and CI bootstrap values of sensitivity, specificity, crossing point between specificity and specificity as well as AUC and AUCPR can be evaluated.
The agghoo procedure is an alternative to usual cross-validation. Instead of choosing the best model trained on V subsamples, it determines a winner model for each subsample, and then aggregates the V outputs. For the details, see "Aggregated hold-out" by Guillaume Maillard, Sylvain Arlot, Matthieu Lerasle (2021) <arXiv:1909.04890>
published in Journal of Machine Learning Research 22(20):1--55.
This package implements the Bayesian Synthetic Control method for causal inference in comparative case studies. This package provides tools for estimating treatment effects in settings with a single treated unit and multiple control units, allowing for uncertainty quantification and flexible modeling of time-varying effects. The methodology is based on the paper by Vives and Martinez (2022) <doi:10.48550/arXiv.2206.01779>
.
Bindings for additional tree-based model engines for use with the parsnip package. Models include gradient boosted decision trees with LightGBM
(Ke et al, 2017.), conditional inference trees and conditional random forests with partykit (Hothorn and Zeileis, 2015. and Hothorn et al, 2006. <doi:10.1198/106186006X133933>), and accelerated oblique random forests with aorsf (Jaeger et al, 2022 <doi:10.5281/zenodo.7116854>).
This package contains functions to estimate a smoothed and a non-smoothed (empirical) time-dependent receiver operating characteristic curve and the corresponding area under the receiver operating characteristic curve and the optimal cutoff point for the right and interval censored survival data. See Beyene and El Ghouch (2020)<doi:10.1002/sim.8671> and Beyene and El Ghouch (2022) <doi:10.1002/bimj.202000382>.
We provide 70 data sets of females of reproductive age from 19 Asian countries, ranging in age from 15 to 49. The data sets are extracted from demographic and health surveys that were conducted over an extended period of time. Moreover, the functions also provide Whippleâ s index as well as age reporting quality such as very rough, rough, approximate, accurate, and highly accurate.
Some wrappers, functions and data sets for for spatial point pattern analysis (mainly based on spatstat'), used in the book "Introduccion al Analisis Espacial de Datos en Ecologia y Ciencias Ambientales: Metodos y Aplicaciones" and in the papers by De la Cruz et al. (2008) <doi:10.1111/j.0906-7590.2008.05299.x> and Olano et al. (2009) <doi:10.1051/forest:2008074>.