This package provides a quasi-simulation based approach to performing power analysis for EWAS (Epigenome-wide association studies) with continuous or binary outcomes. EpipwR relies on empirical EWAS datasets to determine power at specific sample sizes while keeping computational cost low. EpipwR can be run with a variety of standard statistical tests, controlling for either a false discovery rate or a family-wise type I error rate.
Offers a set of functions to easily make predictions for univariate time series. autoTS is a wrapper of existing functions of the forecast and prophet packages, harmonising their outputs in tidy dataframes and using default values for each. The core function getBestModel() allows the user to effortlessly benchmark seven algorithms along with a bagged estimator to identify which one performs the best for a given time series.
Bayesian inference using the no-U-turn (NUTS) algorithm by Hoffman and Gelman (2014) <https://www.jmlr.org/papers/v15/hoffman14a.html>. Designed for AD Model Builder ('ADMB') models, or when R functions for log-density and log-density gradient are available, such as Template Model Builder models and other special cases. Functionality is similar to Stan', and the rstan and shinystan packages are used for diagnostics and inference.
Analyzes longitudinal Electronic Health Record (EHR) data with possibly informative observational time. These methods are grouped into two classes depending on the inferential task. One group focuses on estimating the effect of an exposure on a longitudinal biomarker while the other group assesses the impact of a longitudinal biomarker on time-to-diagnosis outcomes. The accompanying paper is Du et al (2024) <doi:10.48550/arXiv.2410.13113>.
Fits a Causal Effect Random Forest of Interaction Tress (CERFIT) which is a modification of the Random Forest algorithm where each split is chosen to maximize subgroup treatment heterogeneity. Doing this allows it to estimate the individualized treatment effect for each observation in either randomized controlled trial (RCT) or observational data. For more information see L. Li, R. A. Levine, and J. Fan (2022) <doi:10.1002/sta4.457>.
This package provides models to fit the dynamics of a regulated system experiencing exogenous inputs. The underlying models use differential equations and linear mixed-effects regressions to estimate the coefficients of the equation. With them, the functions can provide an estimated signal. The package provides simulation and analysis functions and also print, summary, plot and predict methods, adapted to the function outputs, for easy implementation and presentation of results.
Fuzzy inference systems are based on fuzzy rules, which have a good capability for managing progressive phenomenons. This package is a basic implementation of the main functions to use a Fuzzy Inference System (FIS) provided by the open source software FisPro <https://www.fispro.org>. FisPro allows to create fuzzy inference systems and to use them for reasoning purposes, especially for simulating a physical or biological system.
This package provides a computationally efficient and statistically rigorous fast Kernel Machine method for multi-kernel analysis. The approach is based on a low-rank approximation to the nuisance effect kernel matrices. The algorithm is applicable to continuous, binary, and survival traits and is implemented using the existing single-kernel analysis software SKAT and coxKM'. coxKM can be obtained from <https://github.com/lin-lab/coxKM>.
This package provides functions which make using the Generalized Regression Estimator(GREG) J.N.K. Rao, Isabel Molina, (2015) <doi:10.3390/f11020244> and the Generalized Regression Estimator Operating on Resolutions of Y (GREGORY) easier. The functions are designed to work well within a forestry context, and estimate multiple estimation units at once. Compared to other survey estimation packages, this function has greater flexibility when describing the linear model.
Offers a generalization of the scatterplot matrix based on the recognition that most datasets include both categorical and quantitative information. Traditional grids of scatterplots often obscure important features of the data when one or more variables are categorical but coded as numerical. The generalized pairs plot offers a range of displays of paired combinations of categorical and quantitative variables. Emerson et al. (2013) <DOI:10.1080/10618600.2012.694762>.
This package provides a Jordan algebra is an algebraic object originally designed to study observables in quantum mechanics. Jordan algebras are commutative but non-associative; they satisfy the Jordan identity. The package follows the ideas and notation of K. McCrimmon (2004, ISBN:0-387-95447-3) "A Taste of Jordan Algebras". To cite the package in publications, please use Hankin (2023) <doi:10.48550/arXiv.2303.06062>.
This package provides test of second-order stationarity for time series (for dyadic and arbitrary-n length data). Provides localized autocovariance, with confidence intervals, for locally stationary (nonstationary) time series. See Nason, G P (2013) "A test for second-order stationarity and approximate confidence intervals for localized autocovariance for locally stationary time series." Journal of the Royal Statistical Society, Series B, 75, 879-904. <doi:10.1111/rssb.12015>.
The current version of the MixSAL package allows users to generate data from a multivariate SAL distribution or a mixture of multivariate SAL distributions, evaluate the probability density function of a multivariate SAL distribution or a mixture of multivariate SAL distributions, and fit a mixture of multivariate SAL distributions using the Expectation-Maximization (EM) algorithm (see Franczak et. al, 2014, <doi:10.1109/TPAMI.2013.216>, for details).
This package provides functionality for estimating cross-sectional network structures representing partial correlations in R, while accounting for missing values in the data. Networks are estimated via neighborhood selection, i.e., node-wise multiple regression, with model selection guided by information criteria. Missing data can be handled primarily via multiple imputation or a maximum likelihood-based approach; deletion techniques are available but secondary <doi:10.31234/osf.io/qpj35>.
Infer system functioning with empirical NETwork COMparisons. These methods are part of a growing paradigm in network science that uses relative comparisons of networks to infer mechanistic classifications and predict systemic interventions. They have been developed and applied in Langendorf and Burgess (2021) <doi:10.1038/s41598-021-99251-7>, Langendorf (2020) <doi:10.1201/9781351190831-6>, and Langendorf and Goldberg (2019) <doi:10.48550/arXiv.1912.12551>.
Fast functions implemented in C++ via Rcpp to support the NeuroAnatomy Toolbox ('nat') ecosystem. These functions provide large speed-ups for basic manipulation of neuronal skeletons over pure R functions found in the nat package. The expectation is that end users will not use this package directly, but instead the nat package will automatically use routines from this package when it is available to enable large performance gains.
Add-on for the scan package that creates plots from single-case data frames ('scdf'). It includes functions for styling single-case plots, adding phase-based lines to indicate various statistical parameters, and predefined themes for presentations and publications. More information and in depth examples can be found in the online book "Analyzing Single-Case Data with R and scan" Jürgen Wilbert (2025) <https://jazznbass.github.io/scan-Book/>.
Implementation of the family of generalised age-period-cohort stochastic mortality models. This family of models encompasses many models proposed in the actuarial and demographic literature including the Lee-Carter (1992) <doi:10.2307/2290201> and the Cairns-Blake-Dowd (2006) <doi:10.1111/j.1539-6975.2006.00195.x> models. It includes functions for fitting mortality models, analysing their goodness-of-fit and performing mortality projections and simulations.
This package provides a collection of recipe datasets scraped from <https://www.allrecipes.com/>, containing two complementary datasets: allrecipes with 14,426 general recipes, and cuisines with 2,218 recipes categorized by country of origin. Both datasets include comprehensive recipe information such as ingredients, nutritional facts (calories, fat, carbs, protein), cooking times (preparation and cooking), ratings, and review metadata. All data has been cleaned and standardized, ready for analysis.
Tidy tools for NetCDF data sources. Explore the contents of a NetCDF source (file or URL) presented as variables organized by grid with a database-like interface. The hyper_filter() interactive function translates the filter value or index expressions to array-slicing form. No data is read until explicitly requested, as a data frame or list of arrays via hyper_tibble() or hyper_array().
Matching terminal restriction fragment length polymorphism ('TRFLP') profiles between unknown samples and a database of known samples. TRAMPR facilitates analysis of many unknown profiles at once, and provides tools for working directly with electrophoresis output through to generating summaries suitable for community analyses with R's rich set of statistical functions. TRAMPR also resolves the issues of multiple TRFLP profiles within a species, and shared TRFLP profiles across species.
The Unmanned Aerial Vehicle Mission Planner provides an easy to use work flow for planning autonomous obstacle avoiding surveys of ready to fly unmanned aerial vehicles to retrieve aerial or spot related data. It creates either intermediate flight control files for the DJI-Litchi supported series or ready to upload control files for the pixhawk-based flight controller. Additionally it contains some useful tools for digitizing and data manipulation.
This package provides half-normal plots, reference plots, and Pareto plots of effects from an unreplicated experiment, along with various pseudo-standard-error measures, simulated reference distributions, and other tools. Many of these methods are described in Daniel C. (1959) <doi:10.1080/00401706.1959.10489866> and/or Lenth R.V. (1989) <doi:10.1080/00401706.1989.10488595>, but some new approaches are added and integrated in one package.
Estimates hierarchical models using variational inference. At present, it can estimate logistic, linear, and negative binomial models. It can accommodate models with an arbitrary number of random effects and requires no integration to estimate. It also provides the ability to improve the quality of the approximation using marginal augmentation. Goplerud (2022) <doi:10.1214/21-BA1266> and Goplerud (2024) <doi:10.1017/S0003055423000035> provide details on the variational algorithms.