Create and maintain delayed-data packages (ddp's). Data stored in a ddp are available on demand, but do not take up memory until requested. You attach a ddp with g.data.attach()
, then read from it and assign to it in a manner similar to S-PLUS, except that you must run g.data.save()
to actually commit to disk.
Parse, trim, join, visualise and analyse data from Itrax sediment core multi-parameter scanners manufactured by Cox Analytical Systems, Sweden. Functions are provided for parsing XRF-peak area files, line-scan optical images, and radiographic images, alongside accompanying metadata. A variety of data wrangling tasks like trimming, joining and reducing XRF-peak area data are simplified. Multivariate methods are implemented with appropriate data transformation.
Simulation, inference and clustering of multilevel networks using a Stochastic Block Model framework as described in Chabert-Liddell, Barbillon, Donnet and Lazega (2021) <doi:10.1016/j.csda.2021.107179>. A multilevel network is defined as the junction of two interaction networks, the upper level or inter-organizational level and the lower level or inter-individual level. The inter-level represents an affiliation relationship.
Perform a stratified weighted log-rank test in a randomized controlled trial. Tests can be visualized as a difference in average score on the two treatment arms. These methods are described in Magirr and Burman (2018) <doi:10.48550/arXiv.1807.11097>
, Magirr (2020) <doi:10.48550/arXiv.2007.04767>
, and Magirr and Jimenez (2022) <doi:10.48550/arXiv.2201.10445>
.
This package provides a fast negative binomial mixed model for conducting association analysis of multi-subject single-cell data. It can be used for identifying marker genes, differential expression and co-expression analyses. The model includes subject-level random effects to account for the hierarchical structure in multi-subject single-cell data. See He et al. (2021) <doi:10.1038/s42003-021-02146-6>.
Using the R package reticulate', this package creates an interface to the pysd toolset. The package provides an R interface to a number of pysd functions, and can read files in Vensim mdl format, and xmile format. The resulting simulations are returned as a tibble', and from that the results can be processed using dplyr and ggplot2'. The package has been tested using python3'.
This package implements tools for the analysis of partially ordered data, with a particular focus on the evaluation of multidimensional systems of indicators and on the analysis of poverty. References, Fattore M. (2016) <doi:10.1007/s11205-015-1059-6> Fattore M., Arcagni A. (2016) <doi:10.1007/s11205-016-1501-4> Arcagni A. (2017) <doi:10.1007/978-3-319-45421-4_19>.
Convert Chinese characters into Pinyin (the official romanization system for Standard Chinese in mainland China, Malaysia, Singapore, and Taiwan. See <https://en.wikipedia.org/wiki/Pinyin> for details), Sijiao (four or five numerical digits per character. See <https://en.wikipedia.org/wiki/Four-Corner_Method>.), Wubi (an input method with five strokes. See <https://en.wikipedia.org/wiki/Wubi_method>) or user-defined codes.
This package provides tools for the evaluation of interim analysis plans for sequentially monitored trials on a survival endpoint; tools to construct efficacy and futility boundaries, for deriving power of a sequential design at a specified alternative, template for evaluating the performance of candidate plans at a set of time varying alternatives. See Izmirlian, G. (2014) <doi:10.4310/SII.2014.v7.n1.a4>.
This package provides a method for prediction of environmental conditions based on transcriptome data linked with the environmental gradients. This package provides functions to overview gene-environment relationships, to construct the prediction model, and to predict environmental conditions where the transcriptomes were generated. This package can quest for candidate genes for the model construction even in non-model organisms transcriptomes without any genetic information.
Spatial stratified heterogeneity (SSH) denotes the coexistence of within-strata homogeneity and between-strata heterogeneity. Information consistency-based methods provide a rigorous approach to quantify SSH and evaluate its role in spatial processes, grounded in principles of geographical stratification and information theory (Bai, H. et al. (2023) <doi:10.1080/24694452.2023.2223700>; Wang, J. et al. (2024) <doi:10.1080/24694452.2023.2289982>).
Set of functions to quantify and map the behaviour of winds generated by tropical storms and cyclones in space and time. It includes functions to compute and analyze fields such as the maximum sustained wind field, power dissipation index and duration of exposure to winds above a given threshold. It also includes functions to map the trajectories as well as characteristics of the storms.
This package provides functions to manipulate PDF files: fill out PDF forms; merge multiple PDF files into one; remove selected pages from a file; rename multiple files in a directory; rotate entire pdf document; rotate selected pages of a pdf file; Select pages from a file; splits single input PDF document into individual pages; splits single input PDF document into parts from given points.
Shortest paths between points in grids. Optional barriers and custom transition functions. Applications regarding planet Earth, as well as generally spheres and planes. Optimized for computational performance, customizability, and user friendliness. Graph-theoretical implementation tailored to gridded data. Currently focused on Dijkstra's (1959) <doi:10.1007/BF01386390> algorithm. Future updates broaden the scope to other least cost path algorithms and to centrality measures.
This package provides a utility for working with women's basketball data. A scraping and aggregating interface for the WNBA Stats API <https://stats.wnba.com/> and ESPN's <https://www.espn.com> women's college basketball and WNBA statistics. It provides users with the capability to access the game play-by-plays, box scores, standings and results to analyze the data for themselves.
Hamiltonian Monte Carlo for both continuous and discontinuous posterior distributions with customisable trajectory length termination criterion. See Nishimura et al. (2020) <doi:10.1093/biomet/asz083> for the original Discontinuous Hamiltonian Monte Carlo, Hoffman et al. (2014) <doi:10.48550/arXiv.1111.4246>
and Betancourt (2016) <doi:10.48550/arXiv.1601.00225>
for the definition of possible Hamiltonian Monte Carlo termination criteria.
This package contains diverse functionality to extend the usage of the iSEE
package, including additional classes for the panels or modes facilitating the analysis of differential expression results. This package does not perform differential expression. Instead, it provides methods to embed precomputed differential expression results in a SummarizedExperiment
object, in a manner that is compatible with interactive visualisation in iSEE
applications.
`orthos` decomposes RNA-seq contrasts, for example obtained from a gene knock-out or compound treatment experiment, into unspecific and experiment-specific components. Original and decomposed contrasts can be efficiently queried against a large database of contrasts (derived from ARCHS4, https://maayanlab.cloud/archs4/) to identify similar experiments. `orthos` furthermore provides plotting functions to visualize the results of such a search for similar contrasts.
This package provides methods to efficiently detect competitive endogeneous RNA interactions between two genes. Such interactions are mediated by one or several miRNAs
such that both gene and miRNA
expression data for a larger number of samples is needed as input. The SPONGE package now also includes spongEffects
: ceRNA
modules offer patient-specific insights into the miRNA
regulatory landscape.
This is a package for fast image processing for images in up to 4 dimensions (two spatial dimensions, one time/depth dimension, one color dimension). It provides most traditional image processing tools (filtering, morphology, transformations, etc.) as well as various functions for easily analyzing image data using R. The package wraps CImg, a simple, modern C++ library for image processing.
Inverse normal transformation (INT) based genetic association testing. These tests are recommend for continuous traits with non-normally distributed residuals. INT-based tests robustly control the type I error in settings where standard linear regression does not, as when the residual distribution exhibits excess skew or kurtosis. Moreover, INT-based tests outperform standard linear regression in terms of power. These tests may be classified into two types. In direct INT (D-INT), the phenotype is itself transformed. In indirect INT (I-INT), phenotypic residuals are transformed. The omnibus test (O-INT) adaptively combines D-INT and I-INT into a single robust and statistically powerful approach. See McCaw
ZR, Lane JM, Saxena R, Redline S, Lin X. "Operating characteristics of the rank-based inverse normal transformation for quantitative trait analysis in genome-wide association studies" <doi:10.1111/biom.13214>.
An R implementation for the Strain Elevation and Tension embedding algorithm from Bourne (2020) <doi:10.1007/s41109-020-00329-4>. The package embeds graphs and networks using the Strain Elevation and Tension embedding (SETSe) algorithm. SETSe represents the network as a physical system, where edges are elastic, and nodes exert a force either up or down based on node features. SETSe positions the nodes vertically such that the tension in the edges of a node is equal and opposite to the force it exerts for all nodes in the network. The resultant structure can then be analysed by looking at the node elevation and the edge strain and tension. This algorithm works on weighted and unweighted networks as well as networks with or without explicit node features. Edge elasticity can be created from existing edge weights or kept as a constant.
The functions in this package inspect, read, edit and run files for APSIM "Next Generation" ('JSON') and APSIM "Classic" ('XML'). The files with an apsim extension correspond to APSIM Classic (7.x) - Windows only - and the ones with an apsimx extension correspond to APSIM "Next Generation". For more information about APSIM see (<https://www.apsim.info/>) and for APSIM next generation (<https://apsimnextgeneration.netlify.app/>).
To address the violation of the assumption of normally distributed variables, researchers frequently employ bootstrapping. Building upon established packages for R (Sigmann et al. (2024) <doi:10.32614/CRAN.package.afex>, Lenth (2024) <doi:10.32614/CRAN.package.emmeans>), we provide bootstrapping functions to approximate a normal distribution of the parameter estimates for between-subject, within-subject, and mixed one-way and two-way ANOVA.