Implementation of target diagrams using lattice and ggplot2 graphics. Target diagrams provide a graphical overview of the respective contributions of the unbiased RMSE and MBE to the total RMSE (Jolliff, J. et al., 2009. "Summary Diagrams for Coupled Hydrodynamic-Ecosystem Model Skill Assessment." Journal of Marine Systems 76: 64รข 82.).
The data consist of microarrays from 128 different individuals with acute lymphoblastic leukemia (ALL). A number of additional covariates are available. The data have been normalized (using rma) and it is the jointly normalized data that are available here. The data are presented in the form of an exprSet object.
This package provides a comprehensive implementation of dynamic time warping (DTW) algorithms in R. DTW computes the optimal (least cumulative distance) alignment between points of two time series. Common DTW variants covered include local (slope) and global (window) constraints, subsequence matches, arbitrary distance definitions, normalizations, minimum variance matching, and so on.
Perform first- and second-order multi-scale analyses derived from Ripley K-function (Ripley B. D. (1977) <doi:10.1111/j.2517-6161.1977.tb01615.x>), for univariate, multivariate and marked mapped data in rectangular, circular or irregular shaped sampling windows, with tests of statistical significance based on Monte Carlo simulations.
Computes maximum response from Cardiac Magnetic Resonance Images using spatial and voxel wise spline based Bayesian model. This is an implementation of the methods described in Schmid (2011) <doi:10.1109/TMI.2011.2109733> "Voxel-Based Adaptive Spatio-Temporal Modelling of Perfusion Cardiovascular MRI". IEEE TMI 30(7) p. 1305 - 1313.
Implementation of a Bayesian approach for estimating a mixture of gamma distributions in which the mixing occurs over the shape parameter. This family provides a flexible and novel approach for modeling heavy-tailed distributions, it is computationally efficient, and it only requires to specify a prior distribution for a single parameter.
This package provides methods for analysing and forecasting hierarchical and grouped time series. The available forecast methods include bottom-up, top-down, optimal combination reconciliation (Hyndman et al. 2011) <doi:10.1016/j.csda.2011.03.006>, and trace minimization reconciliation (Wickramasuriya et al. 2018) <doi:10.1080/01621459.2018.1448825>.
Knowledge space theory by Doignon and Falmagne (1999) <doi:10.1007/978-3-642-58625-5> is a set- and order-theoretical framework, which proposes mathematical formalisms to operationalize knowledge structures in a particular domain. The kst package provides basic functionalities to generate, handle, and manipulate knowledge structures and knowledge spaces.
Various plots and functions that make use of the lattice/trellis plotting framework. The plots, which include loaPlot(), loaMapPlot() and trianglePlot(), and use panelPal(), a function that extends lattice and hexbin package methods to automate plot subscript and panel-to-panel and panel-to-key synchronization/management.
The solution of equality constrained least squares problem (LSE) is given through four analytics methods (Generalized QR Factorization, Lagrange Multipliers, Direct Elimination and Null Space method). We expose the orthogonal decomposition called Generalized QR Factorization (GQR) and also RQ factorization. Finally some codes for the solution of LSE applied in quaternions.
Simulates Multidimensional Adaptive Testing using the multidimensional three-parameter logistic model as described in Segall (1996) <doi:10.1007/BF02294343>, van der Linden (1999) <doi:10.3102/10769986024004398>, Reckase (2009) <doi:10.1007/978-0-387-89976-3>, and Mulder & van der Linden (2009) <doi:10.1007/s11336-008-9097-5>.
Compound deconvolution for chromatographic data, including gas chromatography - mass spectrometry (GC-MS) and comprehensive gas chromatography - mass spectrometry (GCxGC-MS). The package includes functions to perform independent component analysis - orthogonal signal deconvolution (ICA-OSD), independent component regression (ICR), multivariate curve resolution (MCR-ALS) and orthogonal signal deconvolution (OSD) alone.
Implement K-nearest neighbor classifier, weighted nearest neighbor classifier, bagged nearest neighbor classifier, optimal weighted nearest neighbor classifier and stabilized nearest neighbor classifier, and perform model selection via 5 fold cross-validation for them. This package also provides functions for computing the classification error and classification instability of a classification procedure.
Computes the sit coefficient between two vectors x and y, possibly all paired coefficients for a matrix. The reference for the methods implemented here is Zhang, Yilin, Canyi Chen, and Liping Zhu. 2022. "Sliced Independence Test." Statistica Sinica. <doi:10.5705/ss.202021.0203>. This package incorporates the Galton peas example.
High dimensional interaction search by brute force requires a quadratic computational cost in the number of variables. The xyz algorithm provably finds strong interactions in almost linear time. For details of the algorithm see: G. Thanei, N. Meinshausen and R. Shah (2016). The xyz algorithm for fast interaction search in high-dimensional data.
Fits a model to adjust and consider additional variations in three dimensions of age groups, time, and space on residuals excluded from a prediction model that have residual such as: linear regression, mixed model and so on. Details are given in Foreman et al. (2015) <doi:10.1186/1478-7954-10-1>.
This package provides functions for hit gene identification and quantification of sgRNA (single-guided RNA) abundances for CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) pooled screen data analysis. Details are in Jeong et al. (2019) <doi:10.1101/gr.245571.118> and Baggerly et al. (2003) <doi:10.1093/bioinformatics/btg173>.
Non-parametric test for equality of multivariate distributions. Trains a classifier to classify (multivariate) observations as coming from one of several distributions. If the classifier is able to classify the observations better than would be expected by chance (using permutation inference), then the null hypothesis that the distributions are equal is rejected.
An abstract DList class helps storing large list-type objects in a distributed manner. Corresponding high-level functions and methods for handling distributed storage (DStorage) and lists allows for processing such DLists on distributed systems efficiently. In doing so it uses a well defined storage backend implemented based on the DStorage class.
Providing access to the API for Gas Infrastructure Europe's natural gas transparency platforms <https://agsi.gie.eu/> and <https://alsi.gie.eu/>. Lets the user easily download metadata on companies and gas storage units covered by the API as well as the respective data on regional, country, company or facility level.
Mass-balance-adjusted Regression algorithm for streamflow reconstruction at sub-annual resolution (e.g., seasonal or monthly). The algorithm implements a penalty term to minimize the differences between the total sub-annual flows and the annual flow. The method is described in Nguyen et al (2020) <DOI:10.1002/essoar.10504791.1>.
This package provides access to the Native Status Resolver (NSR) <https://github.com/ojalaquellueva/nsr> API through R. The user supplies plant taxonomic names and political divisions and the package returns information about their likely native status (e.g., native, non-native,endemic), along with information on how those decisions were made.
Descriptive statistics (mean rank, pairwise frequencies, and marginal matrix), Analytic Hierarchy Process models (with Saaty's and Koczkodaj's inconsistencies), probability models (Luce models, distance-based models, and rank-ordered logit models) and visualization with multidimensional preference analysis for ranking data are provided. Current, only complete rankings are supported by this package.
This package provides an efficient framework for high-dimensional linear and diagonal discriminant analysis with variable selection. The classifier is trained using James-Stein-type shrinkage estimators and predictor variables are ranked using correlation-adjusted t-scores (CAT scores). Variable selection error is controlled using false non-discovery rates or higher criticism.