This package contains diverse functionality to extend the usage of the iSEE
package, including additional classes for the panels or modes facilitating the analysis of differential expression results. This package does not perform differential expression. Instead, it provides methods to embed precomputed differential expression results in a SummarizedExperiment
object, in a manner that is compatible with interactive visualisation in iSEE
applications.
`orthos` decomposes RNA-seq contrasts, for example obtained from a gene knock-out or compound treatment experiment, into unspecific and experiment-specific components. Original and decomposed contrasts can be efficiently queried against a large database of contrasts (derived from ARCHS4, https://maayanlab.cloud/archs4/) to identify similar experiments. `orthos` furthermore provides plotting functions to visualize the results of such a search for similar contrasts.
This package provides methods to efficiently detect competitive endogeneous RNA interactions between two genes. Such interactions are mediated by one or several miRNAs
such that both gene and miRNA
expression data for a larger number of samples is needed as input. The SPONGE package now also includes spongEffects
: ceRNA
modules offer patient-specific insights into the miRNA
regulatory landscape.
This is a package for fast image processing for images in up to 4 dimensions (two spatial dimensions, one time/depth dimension, one color dimension). It provides most traditional image processing tools (filtering, morphology, transformations, etc.) as well as various functions for easily analyzing image data using R. The package wraps CImg, a simple, modern C++ library for image processing.
Implementation of various spirometry equations in R, currently the GLI-2012 (Global Lung Initiative; Quanjer et al. 2012 <doi:10.1183/09031936.00080312>), the race-neutral GLI global 2022 (Global Lung Initiative; Bowerman et al. 2023 <doi:10.1164/rccm.202205-0963OC>), the NHANES3 (National Health and Nutrition Examination Survey; Hankinson et al. 1999 <doi:10.1164/ajrccm.159.1.9712108>) and the JRS 2014 (Japanese Respiratory Society; Kubota et al. 2014 <doi:10.1016/j.resinv.2014.03.003>) equations. Also the GLI-2017 diffusing capacity equations <doi:10.1183/13993003.00010-2017> are implemented. Contains user-friendly functions to calculate predicted and LLN (Lower Limit of Normal) values for different spirometric parameters such as FEV1 (Forced Expiratory Volume in 1 second), FVC (Forced Vital Capacity), etc, and to convert absolute spirometry measurements to percent (%) predicted and z-scores.
Inverse normal transformation (INT) based genetic association testing. These tests are recommend for continuous traits with non-normally distributed residuals. INT-based tests robustly control the type I error in settings where standard linear regression does not, as when the residual distribution exhibits excess skew or kurtosis. Moreover, INT-based tests outperform standard linear regression in terms of power. These tests may be classified into two types. In direct INT (D-INT), the phenotype is itself transformed. In indirect INT (I-INT), phenotypic residuals are transformed. The omnibus test (O-INT) adaptively combines D-INT and I-INT into a single robust and statistically powerful approach. See McCaw
ZR, Lane JM, Saxena R, Redline S, Lin X. "Operating characteristics of the rank-based inverse normal transformation for quantitative trait analysis in genome-wide association studies" <doi:10.1111/biom.13214>.
The functions in this package inspect, read, edit and run files for APSIM "Next Generation" ('JSON') and APSIM "Classic" ('XML'). The files with an apsim extension correspond to APSIM Classic (7.x) - Windows only - and the ones with an apsimx extension correspond to APSIM "Next Generation". For more information about APSIM see (<https://www.apsim.info/>) and for APSIM next generation (<https://apsimnextgeneration.netlify.app/>).
To address the violation of the assumption of normally distributed variables, researchers frequently employ bootstrapping. Building upon established packages for R (Sigmann et al. (2024) <doi:10.32614/CRAN.package.afex>, Lenth (2024) <doi:10.32614/CRAN.package.emmeans>), we provide bootstrapping functions to approximate a normal distribution of the parameter estimates for between-subject, within-subject, and mixed one-way and two-way ANOVA.
Epidemiological population dynamics models traditionally define a pathogen's virulence as the increase in the per capita rate of mortality of infected hosts due to infection. This package provides functions allowing virulence to be estimated by maximum likelihood techniques. The approach is based on the analysis of relative survival comparing survival in matching cohorts of infected vs. uninfected hosts (Agnew 2019) <doi:10.1101/530709>.
An implementation of intervention effect estimation for DAGs (directed acyclic graphs) learned from binary or continuous data. First, parameters are estimated or sampled for the DAG and then interventions on each node (variable) are propagated through the network (do-calculus). Both exact computation (for continuous data or for binary data up to around 20 variables) and Monte Carlo schemes (for larger binary networks) are implemented.
Procedure for solving the maximin problem for identical design across heterogeneous data groups. Particularly efficient when the design matrix is either orthogonal or has tensor structure. Orthogonal wavelets can be specified for 1d, 2d or 3d data simply by name. For tensor structured design the tensor components (two or three) may be supplied. The package also provides an efficient implementation of the generic magging estimator.
Sequential strategies for finding a game equilibrium are proposed in a black-box setting (expensive pay-off evaluations, no derivatives). The algorithm handles noiseless or noisy evaluations. Two acquisition functions are available. Graphical outputs can be generated automatically. V. Picheny, M. Binois, A. Habbal (2018) <doi:10.1007/s10898-018-0688-0>. M. Binois, V. Picheny, P. Taillandier, A. Habbal (2020) <arXiv:1902.06565v2>
.
The method aims to identify important factors in screening experiments by aggregation over random models as studied in Singh and Stufken (2022) <doi:10.48550/arXiv.2205.13497>
. This package provides functions to run the Gauss-Dantzig selector on screening experiments when interactions may be affecting the response. Currently, all functions require each factor to be at two levels coded as +1 and -1.
Fits unimodal and multimodal gambin distributions to species-abundance distributions from ecological data, as in in Matthews et al. (2014) <DOI:10.1111/ecog.00861>. gambin is short for gamma-binomial'. The main function is fit_abundances()
, which estimates the alpha parameter(s) of the gambin distribution using maximum likelihood. Functions are also provided to generate the gambin distribution and for calculating likelihood statistics.
An implementation of the modelling and reporting features described in reference textbook and guidelines (Briggs, Andrew, et al. Decision Modelling for Health Economic Evaluation. Oxford Univ. Press, 2011; Siebert, U. et al. State-Transition Modeling. Medical Decision Making 32, 690-700 (2012).): deterministic and probabilistic sensitivity analysis, heterogeneity analysis, time dependency on state-time and model-time (semi-Markov and non-homogeneous Markov models), etc.
Vector operations between grapes: An infix-only package! The invctr functions perform common and less common operations on vectors, data frames matrices and list objects: - Extracting a value (range), or, finding the indices of a value (range). - Trimming, or padding a vector with a value of your choice. - Simple polynomial regression. - Set and membership operations. - General check & replace function for NAs, Inf and other values.
An easy way to work with census, survey, and geographic data provided by IPUMS in R. Generate and download data through the IPUMS API and load IPUMS files into R with their associated metadata to make analysis easier. IPUMS data describing 1.4 billion individuals drawn from over 750 censuses and surveys is available free of charge from the IPUMS website <https://www.ipums.org>.
This package implements penalised multivariate regression (i.e., for multiple outcomes and many features) by stacked generalisation (<doi:10.1093/bioinformatics/btab576>). For positively correlated outcomes, a single multivariate regression is typically more predictive than multiple univariate regressions. Includes functions for model fitting, extracting coefficients, outcome prediction, and performance measurement. For optional comparisons, install remMap
from GitHub
(<https://github.com/cran/remMap>
).
An R code with a GUI for microclimate time series, with an emphasis on underground environments. KarsTS
provides linear and nonlinear methods, including recurrence analysis (Marwan et al. (2007) <doi:10.1016/j.physrep.2006.11.001>) and filling methods (Moffat et al. (2007) <doi:10.1016/j.agrformet.2007.08.011>), as well as tools to manipulate easily time series and gap sets.
This package provides extensions for packages leaflet & mapdeck', many of which are used by package mapview'. Focus is on functionality readily available in Geographic Information Systems such as Quantum GIS'. Includes functions to display coordinates of mouse pointer position, query image values via mouse pointer and zoom-to-layer buttons. Additionally, provides a feature type agnostic function to add points, lines, polygons to a map.
Robust nonparametric bootstrap and permutation tests for location, correlation, and regression problems, as described in Helwig (2019a) <doi:10.1002/wics.1457> and Helwig (2019b) <doi:10.1016/j.neuroimage.2019.116030>. Univariate and multivariate tests are supported. For each problem, exact tests and Monte Carlo approximations are available. Five different nonparametric bootstrap confidence intervals are implemented. Parallel computing is implemented via the parallel package.
The QRI_func()
function performs quantile regression analysis using age and sex as predictors to calculate the Quantile Regression Index (QRI) score for each individualâ s regional brain imaging metrics and then averages across the regional scores to generate an average tissue specific score for each subject. The QRI_plot()
is used to plot QRI and generate the normative curves for individual measurements.
This package provides models to identify bimodally expressed genes from RNAseq data based on the Bimodality Index. SIBERG models the RNAseq data in the finite mixture modeling framework and incorporates mechanisms for dealing with RNAseq normalization. Three types of mixture models are implemented, namely, the mixture of log normal, negative binomial, or generalized Poisson distribution. See Tong et al. (2013) <doi:10.1093/bioinformatics/bts713>.
Predicts the occurrence times (in day-of-year) of spring phenological events. Three methods, including the accumulated degree days (ADD) method, the accumulated days transferred to a standardized temperature (ADTS) method, and the accumulated developmental progress (ADP) method, were used. See Shi et al. (2017a) <doi:10.1016/j.agrformet.2017.04.001> and Shi et al. (2017b) <doi:10.1093/aesa/sax063> for details.