Empirical Bayes ranking applicable to parallel-estimation settings where the estimated parameters are asymptotically unbiased and normal, with known standard errors. A mixture normal prior for each parameter is estimated using Empirical Bayes methods, subsequentially ranks for each parameter are simulated from the resulting joint posterior over all parameters (The marginal posterior densities for each parameter are assumed independent). Finally, experiments are ordered by expected posterior rank, although computations minimizing other plausible rank-loss functions are also given.
This package provides a population genetic simulator, which is able to generate synthetic datasets for single-nucleotide polymorphisms (SNP) for multiple populations. The genetic distances among populations can be set according to the Fixation Index (Fst) as explained in Balding and Nichols (1995) <doi:10.1007/BF01441146>. This tool is able to simulate outlying individuals and missing SNPs can be specified. For Genome-wide association study (GWAS), disease status can be set in desired level according risk ratio.
Quantitative genetics tool supporting the modelling of multivariate genetic variance structures in quantitative data. It allows fitting different models through multivariate genetic-relationship-matrix (GRM) structural equation modelling (SEM) in unrelated individuals, using a maximum likelihood approach. Specifically, it combines genome-wide genotyping information, as captured by GRMs, with twin-research-based SEM techniques, St Pourcain et al. (2017) <doi:10.1016/j.biopsych.2017.09.020>, Shapland et al. (2020) <doi:10.1101/2020.08.14.251199>.
Linear and logistic regression models penalized with hierarchical shrinkage priors for selection of biomarkers (or more general variable selection), which can be fitted using Stan (Carpenter et al. (2017) <doi:10.18637/jss.v076.i01>). It implements the horseshoe and regularized horseshoe priors (Piironen and Vehtari (2017) <doi:10.1214/17-EJS1337SI>), as well as the projection predictive selection approach to recover a sparse set of predictive biomarkers (Piironen, Paasiniemi and Vehtari (2020) <doi:10.1214/20-EJS1711>).
Functions, data sets, analyses and examples from the second edition of the book A Handbook of Statistical Analyses Using R (Brian S. Everitt and Torsten Hothorn, Chapman & Hall/CRC, 2008). The first chapter of the book, which is entitled An Introduction to R'', is completely included in this package, for all other chapters, a vignette containing all data analyses is available. In addition, the package contains Sweave code for producing slides for selected chapters (see HSAUR2/inst/slides).
Short for linear binning', the linbin package provides functions for manipulating, binning, and plotting linearly referenced data. Although developed for data collected on river networks, it can be used with any interval or point data referenced to a 1-dimensional coordinate system. Flexible bin generation and batch processing makes it easy to compute and visualize variables at multiple scales, useful for identifying patterns within and between variables and investigating the influence of scale of observation on data interpretation.
This package provides functions to prepare, visualize, and analyse diachronic network data on local political actors, with a particular focus on the development of local party systems and identification of actor groups. Formalizes and automates a continuity diagram method that has been previously applied in research on Czech local politics, e.g. Bubenicek and Kubalek (2010, ISSN:1803-8220), Kubalek and Bubenicek (2012, ISSN:1803-8220), and Cmejrek, Bubenicek, and Copik (2010, ISBN:978-80-247-3061-5).
The main function, plot_mm(), is used for (gg)plotting output from mixture models, including both densities and overlaying mixture weight component curves from the fit models in line with the tidy principles. The package includes several additional functions for added plot customization. Supported model objects include: mixtools', EMCluster', and flexmix', with more from each in active dev. Supported mixture model specifications include mixtures of univariate Gaussians, multivariate Gaussians, Gammas, logistic regressions, linear regressions, and Poisson regressions.
Kataegis is a localized hypermutation occurring when a region is enriched in somatic SNVs. Kataegis can result from multiple cytosine deaminations catalyzed by the AID/APOBEC family of proteins. This package contains functions to detect kataegis from SNVs in BED format. This package reports two scores per kataegic event, a hypermutation score and an APOBEC mediated kataegic score. Yousif, F. et al.; The Origins and Consequences of Localized and Global Somatic Hypermutation; Biorxiv 2018 <doi:10.1101/287839>.
An implementation of a phylogenetic comparative method. It can fit univariate among-species Ornstein-Uhlenbeck models of phenotypic trait evolution, where the trait evolves towards a primary optimum. The optimum can be modelled as a single parameter, as multiple discrete regimes on the phylogenetic tree, and/or with continuous covariates. See also Hansen (1997) <doi:10.2307/2411186>, Butler & King (2004) <doi:10.1086/426002>, Hansen et al. (2008) <doi:10.1111/j.1558-5646.2008.00412.x>.
Generates region-specific Suess and Laws corrections for stable carbon isotope data from marine organisms collected between 1850 and 2023. Version 0.1.6 of SuessR contains four built-in regions: the Bering Sea ('Bering Sea'), the Aleutian archipelago ('Aleutian Islands'), the Gulf of Alaska ('Gulf of Alaska'), and the subpolar North Atlantic ('Subpolar North Atlantic'). Users can supply their own environmental data for regions currently not built into the package to generate corrections for those regions.
Enables users to build ToxPi prioritization models and provides functionality within the grid framework for plotting ToxPi graphs. toxpiR allows for more customization than the ToxPi GUI (<https://toxpi.org>) and integration into existing workflows for greater ease-of-use, reproducibility, and transparency. toxpiR package behaves nearly identically to the GUI; the package documentation includes notes about all differences. The vignettes download example files from <https://github.com/ToxPi/ToxPi-example-files>.
Converts coefficients, standard errors, significance stars, and goodness-of-fit statistics of statistical models into LaTeX tables or HTML tables/MS Word documents or to nicely formatted screen output for the R console for easy model comparison. A list of several models can be combined in a single table. The output is highly customizable. New model types can be easily implemented. Details can be found in Leifeld (2013), JStatSoft <doi:10.18637/jss.v055.i08>.).
Helper functions for MASCOTNUM / RT-UQ <https://uq.math.cnrs.fr/> algorithm template, for design of numerical experiments practice: algorithm template parser to support MASCOTNUM specification <https://github.com/MASCOTNUM/algorithms>, ask & tell decoupling injection (inspired by <https://search.r-project.org/CRAN/refmans/sensitivity/html/decoupling.html>) to use "crimped" algorithms (like uniroot(), optim(), ...) from outside R, basic template examples: Brent algorithm for 1 dim root finding and L-BFGS-B from base optim().
STARMA (Space-Time Autoregressive Moving Average) models are commonly utilized in modeling and forecasting spatiotemporal time series data. However, the intricate nonlinear dynamics observed in many space-time rainfall patterns often exceed the capabilities of conventional STARMA models. This R package enables the fitting of Time Delay Spatio-Temporal Neural Networks, which are adept at handling such complex nonlinear dynamics efficiently. For detailed methodology, please refer to Saha et al. (2020) <doi:10.1007/s00704-020-03374-2>.
This package provides a simple XML tree parser/generator. It includes functions to read XML files into R objects, get information out of and into nodes, and write R objects back to XML code. It's not as powerful as the XML package and doesn't aim to be, but for simple XML handling it could be useful. It was originally developed for the R GUI and IDE RKWard <https://rkward.kde.org>, to make plugin development easier.
An R package for integrated differential expression and differential network analysis based on omic data for cancer biomarker discovery. Both correlation and partial correlation can be used to generate differential network to aid the traditional differential expression analysis to identify changes between biomolecules on both their expression and pairwise association levels. A detailed description of the methodology has been published in Methods journal (PMID: 27592383). An interactive visualization feature allows for the exploration and selection of candidate biomarkers.
This packages provides C++ header files for developers wishing to create R packages that processes BAM files. ompBAM automates file access, memory management, and handling of multiple threads behind the scenes', so developers can focus on creating domain-specific functionality. The included vignette contains detailed documentation of this API, including quick-start instructions to create a new ompBAM-based package, and step-by-step explanation of the functionality behind the example packaged included within ompBAM.
This package is an R implementation for fully unsupervised deconvolution of complex tissues. DebCAM provides basic functions to perform unsupervised deconvolution on mixture expression profiles by CAM and some auxiliary functions to help understand the subpopulation- specific results. It also implements functions to perform supervised deconvolution based on prior knowledge of molecular markers, S matrix or A matrix. Combining molecular markers from CAM and from prior knowledge can achieve semi-supervised deconvolution of mixtures.
This package provides functions, data sets, analyses and examples from the third edition of the book A Handbook of Statistical Analyses Using R (Torsten Hothorn and Brian S. Everitt, Chapman & Hall/CRC, 2014). The first chapter of the book, which is entitled An Introduction to R, is completely included in this package, for all other chapters, a vignette containing all data analyses is available. In addition, Sweave source code for slides of selected chapters is included in this package.
Addressing a central challenge encountered in Mendelian randomization (MR) studies, where MR primarily focuses on discerning the effects of individual exposures on specific outcomes and establishes causal links between them. Using a network-based methodology, the intricacy involving interdependent outcomes due to numerous factors has been tackled through this routine. Based on Ni et al. (2018) <doi:10.1214/17-BA1087>, MR.RGM extends to a broader exploration of the causal landscape by leveraging on network structures and involves the construction of causal graphs that capture interactions between response variables and consequently between responses and instrument variables. The resulting Graph visually represents these causal connections, showing directed edges with effect sizes labeled. MR.RGM facilitates the navigation of various data availability scenarios effectively by accommodating three input formats, i.e., individual-level data and two types of summary-level data. In the process, causal effects, adjacency matrices, and other essential parameters of the complex biological networks, are estimated. Besides, MR.RGM provides uncertainty quantification for specific network structures among response variables.
This package provides classes and functions to work with biological sequences (DNA, RNA and amino acid sequences). Implements S3 infrastructure to work with biological sequences as described in Keck (2020) <doi:10.1111/2041-210X.13490>. Provides a collection of functions to perform biological conversion among classes (transcription, translation) and basic operations on sequences (detection, selection and replacement based on positions or patterns). The package also provides functions to import and export sequences from and to other package formats.
Working with reproducible reports or any other similar projects often require to run the script that builds the output file in a specified way. buildr can help you organize, modify and comfortably run those scripts. The package provides a set of functions that interactively guides you through the process and that are available as RStudio Addin, meaning you can set up the keyboard shortcuts, enabling you to choose and run the desired build script with one keystroke anywhere anytime.
Computes a structural similarity metric (after the style of MS-SSIM for images) for binary and categorical 2D and 3D images. Can be based on accuracy (simple matching), Cohen's kappa, Rand index, adjusted Rand index, Jaccard index, Dice index, normalized mutual information, or adjusted mutual information. In addition, has fast computation of Cohen's kappa, the Rand indices, and the two mutual informations. Implements the methods of Thompson and Maitra (2020) <doi:10.48550/arXiv.2004.09073>.