An R API to MET Norway's Frost API <https://frost.met.no/index.html> to retrieve data as data frames. The Frost API, and the underlying data, is made available by the Norwegian Meteorological Institute (MET Norway). The data and products are distributed under the Norwegian License for Open Data 2.0 (NLOD) <https://data.norge.no/nlod/en/2.0> and Creative Commons 4.0 <https://creativecommons.org/licenses/by/4.0/>.
Routines that allow the user to run goodness of fit tests based on empirical distribution functions for formal model evaluation in a general likelihood model. In addition, functions are provided to test if a sample follows Normal or Gamma distributions, validate the normality assumptions in a linear model, and examine the appropriateness of a Gamma distribution in generalized linear models with various link functions. Michael Arthur Stephens (1976) <http://www.jstor.org/stable/2958206>.
Easy wrangling and model-free analysis of microbial growth curve data, as commonly output by plate readers. Tools for reshaping common plate reader outputs into tidy formats and merging them with design information, making data easy to work with using gcplyr and other packages. Also streamlines common growth curve processing steps, like smoothing and calculating derivatives, and facilitates model-free characterization and analysis of growth data. See methods at <https://mikeblazanin.github.io/gcplyr/>.
Organize a so-called ragged array as generalized arrays, which is simply an array with sub-dimensions denoting the subdivision of dimensions (grouping of members within dimensions). By the margins (names of dimensions and sub-dimensions) in generalized arrays, operators and utility functions provided in this package automatically match the margins, doing map-reduce style parallel computation along margins. Generalized arrays are also cooperative to R's native functions that work on simple arrays.
This package provides methods for processing spatial data for decision-making. This package is an R implementation of methods provided by the open source software GeoFIS <https://www.geofis.org> (Leroux et al. 2018) <doi:10.3390/agriculture8060073>. The main functionalities are the management zone delineation (Pedroso et al. 2010) <doi:10.1016/j.compag.2009.10.007> and data aggregation (Mora-Herrera et al. 2020) <doi:10.1016/j.compag.2020.105624>.
The model is high-dimensional vector autoregression with measurement error, also known as linear gaussian state-space model. Provable sparse expectation-maximization algorithm is provided for the estimation of transition matrix and noise variances. Global and simultaneous testings are implemented for transition matrix with false discovery rate control. For more information, see the accompanying paper: Lyu, X., Kang, J., & Li, L. (2023). "Statistical inference for high-dimensional vector autoregression with measurement error", Statistica Sinica.
This package provides functions to build and use equal-area hexagonal discrete global grids using the Snyder ISEA projection ('Snyder 1992 <doi:10.3138/27H7-8K88-4882-1752>). Implements the ISEA discrete global grid system ('Sahr', White and Kimerling 2003 <doi:10.1559/152304003100011090>). Includes a fast C++ core for projection and aperture quantization, and sf'/'terra'-compatible R wrappers for grid generation and coordinate assignment. Output is compatible with dggridR for interoperability.
This package provides a user-friendly interface for the Hierarchical Data Format 5 ('HDF5') library designed to "just work." It bundles the necessary system libraries to ensure easy installation on all platforms. Features smart defaults that automatically map R objects (vectors, matrices, data frames) to efficient HDF5 types, removing the need to manage low-level details like dataspaces or property lists. Uses the HDF5 library developed by The HDF Group <https://www.hdfgroup.org/>.
Calculates 3D lacunarity from voxel data. It is designed for use with point clouds generated from Light Detection And Ranging (LiDAR) scans in order to measure the spatial heterogeneity of 3-dimensional structures such as forest stands. It provides fast C++ functions to efficiently bin point cloud data into voxels and calculate lacunarity using different variants of the gliding-box algorithm originated by Allain & Cloitre (1991) <doi:10.1103/PhysRevA.44.3552>.
Solve scalar-on-function linear models, including generalized linear mixed effect model and quantile linear regression model, and bias correction estimation methods due to measurement error. Details about the measurement error bias correction methods, see Luan et al. (2023) <doi:10.48550/arXiv.2305.12624>, Tekwe et al. (2022) <doi:10.1093/biostatistics/kxac017>, Zhang et al. (2023) <doi:10.5705/ss.202021.0246>, Tekwe et al. (2019) <doi:10.1002/sim.8179>.
Extension of the mgcv package, providing visual tools for Generalized Additive Models that exploit the additive structure of such models, scale to large data sets and can be used in conjunction with a wide range of response distributions. The focus is providing visual methods for better understanding the model output and for aiding model checking and development beyond simple exponential family regression. The graphical framework is based on the layering system provided by ggplot2'.
This package provides a suite of diagnostic tools for univariate point processes. This includes tools for simulating and fitting both common and more complex temporal point processes. We also include functions to visualise these point processes and collect existing diagnostic tools of Brown et al. (2002) <doi:10.1162/08997660252741149> and Wu et al. (2021) <doi:10.1002/9781119821588.ch7>, which can be used to assess the fit of a chosen point process model.
Evaluation of the pdf and the cdf of the univariate, noncentral, p-generalized normal distribution. Sampling from the univariate, noncentral, p-generalized normal distribution using either the p-generalized polar method, the p-generalized rejecting polar method, the Monty Python method, the Ziggurat method or the method of Nardon and Pianca. The package also includes routines for the simulation of the bivariate, p-generalized uniform distribution and the simulation of the corresponding angular distribution.
This package creates classifier for binary outcomes using Adaptive Boosting (AdaBoost) algorithm on decision stumps with a fast C++ implementation. For a description of AdaBoost, see Freund and Schapire (1997) <doi:10.1006/jcss.1997.1504>. This type of classifier is nonlinear, but easy to interpret and visualize. Feature vectors may be a combination of continuous (numeric) and categorical (string, factor) elements. Methods for classifier assessment, predictions, and cross-validation also included.
This package provides a robust and powerful empirical Bayesian approach is developed for replicability analysis of two large-scale experimental studies. The method controls the false discovery rate by using the joint local false discovery rate based on the replicability null as the test statistic. An EM algorithm combined with a shape constraint nonparametric method is used to estimate unknown parameters and functions. [Li, Y. et al., (2024), <doi:10.1371/journal.pgen.1011423>].
Separate a data frame in two based on key columns. The function unjoin() provides an inside-out version of a nested data frame. This is used to identify duplication and normalize it (in the database sense) by linking two tables with the redundancy removed. This is a basic requirement for detecting topology within spatial structures that has motivated the need for this package as a building block for workflows within more applied projects.
This package provides a toolbox of common robust statistical tests, including robust descriptives, robust t-tests, and robust ANOVA. It is also available as a module for jamovi (see <https://www.jamovi.org> for more information). Walrus is based on the WRS2 package by Patrick Mair, which is in turn based on the scripts and work of Rand Wilcox. These analyses are described in depth in the book Introduction to Robust Estimation & Hypothesis Testing'.
Allows to provide live interpretations and explanations of statistical functions in R. These interpretations and explanations are shown when the explained function is called by the user. They can interact with the values of the explained function's actual results to offer relevant, meaningful insights. The xplain interpretations and explanations are based on an easy-to-use XML format that allows to include R code to interact with the returns of the explained function.
ASSIGN is a computational tool to evaluate the pathway deregulation/activation status in individual patient samples. ASSIGN employs a flexible Bayesian factor analysis approach that adapts predetermined pathway signatures derived either from knowledge-based literature or from perturbation experiments to the cell-/tissue-specific pathway signatures. The deregulation/activation level of each context-specific pathway is quantified to a score, which represents the extent to which a patient sample encompasses the pathway deregulation/activation signature.
Banksy is an R package that incorporates spatial information to cluster cells in a feature space (e.g. gene expression). To incorporate spatial information, BANKSY computes the mean neighborhood expression and azimuthal Gabor filters that capture gene expression gradients. These features are combined with the cell's own expression to embed cells in a neighbor-augmented product space which can then be clustered, allowing for accurate and spatially-aware cell typing and tissue domain segmentation.
This package provides functionality for untargeted LC-MS metabolomics research as specified in the associated protocol article in the Metabolomics Data Processing and Data Analysis—Current Best Practices special issue of the Metabolites journal (2020). This includes tabular data preprocessing and quality control, uni- and multivariate analysis as well as quality control visualizations, feature-wise visualizations and results visualizations. Raw data preprocessing and functionality related to biological context, such as pathway analysis, is not included.
The spicyR package provides a framework for performing inference on changes in spatial relationships between pairs of cell types for cell-resolution spatial omics technologies. spicyR consists of three primary steps: (i) summarizing the degree of spatial localization between pairs of cell types for each image; (ii) modelling the variability in localization summary statistics as a function of cell counts and (iii) testing for changes in spatial localizations associated with a response variable.
The goal is to print an "aperçu", a short view of a vector, a matrix, a data.frame, a list or an array. By default, it prints the first 5 elements of each dimension. By default, the number of columns is equal to the number of lines. If you want to control the selection of the elements, you can pass a list, with each element being a vector giving the selection for each dimension.
Implementation of Graph Signal Processing (GSP) methods including Spectral Graph Wavelet Transform (SGWT) for analyzing spatial patterns in biological data. Based on Hammond, Vandergheynst, and Gribonval (2011) <doi:10.1016/j.acha.2010.04.005>. Provides tools for multi-scale analysis of biology spatial signals, including forward and inverse transforms, energy analysis, and visualization functions tailored for biological applications. Biological application example is on Stephanie, Yao, Yuzhou (2024) <doi:10.1101/2024.12.20.629650>.