Addons for the mice package to perform multiple imputation using chained equations with two-level data. Includes imputation methods dedicated to sporadically and systematically missing values. Imputation of continuous, binary or count variables are available. Following the recommendations of Audigier, V. et al (2018) <doi:10.1214/18-STS646>, the choice of the imputation method for each variable can be facilitated by a default choice tuned according to the structure of the incomplete dataset. Allows parallel calculation and overimputation for mice'.
This package offers three important components: (1) to construct a use-defined linear mixed model, (2) to employ one of linear mixed model approaches: minimum norm quadratic unbiased estimation (MINQUE) (Rao, 1971) for variance component estimation and random effect prediction; and (3) to employ a jackknife resampling technique to conduct various statistical tests. In addition, this package provides the function for model or data evaluations.This R package offers fast computations for large data sets analyses for various irregular data structures.
Recently, multiple marginal variable selection methods have been developed and shown to be effective in Gene-Environment interactions studies. We propose a novel marginal Bayesian variable selection method for Gene-Environment interactions studies. In particular, our marginal Bayesian method is robust to data contamination and outliers in the outcome variables. With the incorporation of spike-and-slab priors, we have implemented the Gibbs sampler based on Markov Chain Monte Carlo. The core algorithms of the package have been developed in C++'.
Segregation is a network-level property such that edges between predefined groups of vertices are relatively less likely. Network homophily is a individual-level tendency to form relations with people who are similar on some attribute (e.g. gender, music taste, social status, etc.). In general homophily leads to segregation, but segregation might arise without homophily. This package implements descriptive indices measuring homophily/segregation. It is a computational companion to Bojanowski & Corten (2014) <doi:10.1016/j.socnet.2014.04.001>.
The plsdof package provides Degrees of Freedom estimates for Partial Least Squares (PLS) Regression. Model selection for PLS is based on various information criteria (aic, bic, gmdl) or on cross-validation. Estimates for the mean and covariance of the PLS regression coefficients are available. They allow the construction of approximate confidence intervals and the application of test procedures (Kramer and Sugiyama 2012 <doi:10.1198/jasa.2011.tm10107>). Further, cross-validation procedures for Ridge Regression and Principal Components Regression are available.
This package implements a unified framework of parametric simplex method for a variety of sparse learning problems (e.g., Dantzig selector (for linear regression), sparse quantile regression, sparse support vector machines, and compressive sensing) combined with efficient hyper-parameter selection strategies. The core algorithm is implemented in C++ with Eigen3 support for portable high performance linear algebra. For more details about parametric simplex method, see Haotian Pang (2017) <https://papers.nips.cc/paper/6623-parametric-simplex-method-for-sparse-learning.pdf>.
This package provides functions to infer co-mapping trait hotspots and causal models. Chaibub Neto E, Keller MP, Broman AF, Attie AD, Jansen RC, Broman KW, Yandell BS (2012) Quantile-based permutation thresholds for QTL hotspots. Genetics 191 : 1355-1365. <doi:10.1534/genetics.112.139451>. Chaibub Neto E, Broman AT, Keller MP, Attie AD, Zhang B, Zhu J, Yandell BS (2013) Modeling causality for pairs of phenotypes in system genetics. Genetics 193 : 1003-1013. <doi:10.1534/genetics.112.147124>.
This software provides tools for quantitative trait mapping in populations such as advanced intercross lines where relatedness among individuals should not be ignored. It can estimate background genetic variance components, impute missing genotypes, simulate genotypes, perform a genome scan for putative quantitative trait loci (QTL), and plot mapping results. It also has functions to calculate identity coefficients from pedigrees, especially suitable for pedigrees that consist of a large number of generations, or estimate identity coefficients from genotypic data in certain circumstances.
This package implements the following approaches for multidimensional scaling (MDS) based on stress minimization using majorization (smacof): ratio/interval/ordinal/spline MDS on symmetric dissimilarity matrices, MDS with external constraints on the configuration, individual differences scaling (idioscal, indscal), MDS with spherical restrictions, and ratio/interval/ordinal/spline unfolding (circular restrictions, row-conditional). Various tools and extensions like jackknife MDS, bootstrap MDS, permutation tests, MDS biplots, gravity models, unidimensional scaling, drift vectors (asymmetric MDS), classical scaling, and Procrustes are implemented as well.
Gene set analysis methods exist to combine SNP-level association p-values into gene sets, calculating a single association p-value for each gene set. This package implements two such methods that require only the calculated SNP p-values, the gene set(s) of interest, and a correlation matrix (if desired). One method (GLOSSI) requires independent SNPs and the other (VEGAS) can take into account correlation (LD) among the SNPs. Built-in plotting functions are available to help users visualize results.
nuCpos, a derivative of NuPoP, is an R package for prediction of nucleosome positions. nuCpos calculates local and whole nucleosomal histone binding affinity (HBA) scores for a given 147-bp sequence. Note: This package was designed to demonstrate the use of chemical maps in prediction. As the parental package NuPoP now provides chemical-map-based prediction, the function for dHMM-based prediction was removed from this package. nuCpos continues to provide functions for HBA calculation.
This package provides gsubfn which is like gsub but can take a replacement function or certain other objects instead of the replacement string. Matches and back references are input to the replacement function and replaced by the function output. gsubfn can be used to split strings based on content rather than delimiters and for quasi-perl-style string interpolation. The package also has facilities for translating formulas to functions and allowing such formulas in function calls instead of functions.
The RISC-V Proxy Kernel, pk, is a lightweight application execution environment that can host statically-linked RISC-V ELF binaries. It is designed to support tethered RISC-V implementations with limited I/O capability and thus handles I/O-related system calls by proxying them to a host computer.
This package also contains the Berkeley Boot Loader, bbl, which is a supervisor execution environment for tethered RISC-V systems. It is designed to host the RISC-V Linux port.
This package contains various functions for optimal scaling. One function performs optimal scaling by maximizing an aspect (i.e. a target function such as the sum of eigenvalues, sum of squared correlations, squared multiple correlations, etc.) of the corresponding correlation matrix. Another function performs implements the LINEALS approach for optimal scaling by minimization of an aspect based on pairwise correlations and correlation ratios. The resulting correlation matrix and category scores can be used for further multivariate methods such as structural equation models.
Fitting Bayesian multiple and mixed-effect regression models for circular data based on the projected normal distribution. Both continuous and categorical predictors can be included. Sampling from the posterior is performed via an MCMC algorithm. Posterior descriptives of all parameters, model fit statistics and Bayes factors for hypothesis tests for inequality constrained hypotheses are provided. See Cremers, Mulder & Klugkist (2018) <doi:10.1111/bmsp.12108> and Nuñez-Antonio & Guttiérez-Peña (2014) <doi:10.1016/j.csda.2012.07.025>.
Demonstrate the results of a statistical model object as a dynamic nomogram in an RStudio panel or web browser. The package provides two generics functions: DynNom, which display statistical model objects as a dynamic nomogram; DNbuilder, which builds required scripts to publish a dynamic nomogram on a web server such as the <https://www.shinyapps.io/>. Current version of DynNom supports stats::lm, stats::glm, survival::coxph, rms::ols, rms::Glm, rms::lrm, rms::cph, and mgcv::gam model objects.
This package provides functions for range estimation in birds based on Pennycuick (2008) and Pennycuick (1975), Flight program which compliments Pennycuick (2008) requires manual entry of birds which can be tedious when there are thousands of birds to estimate. Implemented are two ODE methods discussed in Pennycuick (1975) and time-marching computation method "constant muscle mass" as in Pennycuick (1998). See Pennycuick (1975, ISBN:978-0-12-249405-5), Pennycuick (1998) <doi:10.1006/jtbi.1997.0572>, and Pennycuick (2008, ISBN:9780080557816).
Implementation of Forecastable Component Analysis ('ForeCA'), including main algorithms and auxiliary function (summary, plotting, etc.) to apply ForeCA to multivariate time series data. ForeCA is a novel dimension reduction (DR) technique for temporally dependent signals. Contrary to other popular DR methods, such as PCA or ICA', ForeCA takes time dependency explicitly into account and searches for the most forecastable signal. The measure of forecastability is based on the Shannon entropy of the spectral density of the transformed signal.
This function is an extension of the Small Area Estimation (SAE) model. Geoadditive Small Area Model is a combination of the geoadditive model with the Small Area Estimation (SAE) model, by adding geospatial information to the SAE model. This package refers to J.N.K Rao and Isabel Molina (2015, ISBN: 978-1-118-73578-7), Bocci, C., & Petrucci, A. (2016)<doi:10.1002/9781118814963.ch13>, and Ardiansyah, M., Djuraidah, A., & Kurnia, A. (2018)<doi:10.21082/jpptp.v2n2.2018.p101-110>.
Allows to evaluate Higher Order Assortativity of complex networks defined through objects of class igraph from the package of the same name. The package returns a result also for directed and weighted graphs. References, Arcagni, A., Grassi, R., Stefani, S., & Torriero, A. (2017) <doi:10.1016/j.ejor.2017.04.028> Arcagni, A., Grassi, R., Stefani, S., & Torriero, A. (2021) <doi:10.1016/j.jbusres.2019.10.008> Arcagni, A., Cerqueti, R., & Grassi, R. (2023) <doi:10.48550/arXiv.2304.01737>.
This package provides a shiny app that supports both dual and bulk RNA-seq, with the dual RNA-seq functionality offering the flexibility to perform either a sequential approach (where reads are mapped separately to each genome) or a combined approach (where reads are aligned to a single merged genome). The user-friendly interface automates the analysis process, providing step-by-step guidance, making it easy for users to navigate between different analysis steps, and download intermediate results and publication-ready plots.
It uses phenological and productivity-related variables derived from time series of vegetation indexes, such as the Normalized Difference Vegetation Index, to assess ecosystem dynamics and change, which eventually might drive to land degradation. The final result of the Land Productivity Dynamics indicator is a categorical map with 5 classes of land productivity dynamics, ranging from declining to increasing productivity. See www.sciencedirect.com/science/article/pii/S1470160X21010517/ for a description of the methods used in the package to calculate the indicator.
Fits regularization paths for linear regression, GLM, and Cox regression models using lasso or nonconvex penalties, in particular the minimax concave penalty (MCP) and smoothly clipped absolute deviation (SCAD) penalty, with options for additional L2 penalties (the "elastic net" idea). Utilities for carrying out cross-validation as well as post-fitting visualization, summarization, inference, and prediction are also provided. For more information, see Breheny and Huang (2011) <doi:10.1214/10-AOAS388> or visit the ncvreg homepage <https://pbreheny.github.io/ncvreg/>.
Estimate the receiver operating characteristic (ROC) curve, area under the curve (AUC) and optimal cut-off points for individual classification taking into account complex sampling designs when working with complex survey data. Methods implemented in this package are described in: A. Iparragirre, I. Barrio, I. Arostegui (2024) <doi:10.1002/sta4.635>; A. Iparragirre, I. Barrio, J. Aramendi, I. Arostegui (2022) <doi:10.2436/20.8080.02.121>; A. Iparragirre, I. Barrio (2024) <doi:10.1007/978-3-031-65723-8_7>.