Does uniformly most powerful (UMP) and uniformly most powerful unbiased (UMPU) tests. At present only distribution implemented is binomial distribution. Also does fuzzy tests and confidence intervals (following Geyer and Meeden, 2005, <doi:10.1214/088342305000000340>) for the binomial distribution (one-tailed procedures based on UMP test and two-tailed procedures based on UMPU test).
Procedures for calculation, plotting, and approximation of the outputs for fuzzy numbers (see A.I. Ban, L. Coroianu, P. Grzegorzewski "Fuzzy Numbers: Approximations, Ranking and Applications" (2015)) based on the Zadeh's Extension Principle (see de Barros, L.C., Bassanezi, R.C., Lodwick, W.A. (2017) <doi:10.1007/978-3-662-53324-6_2>).
This package implements various procedures for finding multiple change-points. Two methods make use of dynamic programming and pruning, with no distributional assumptions other than the existence of certain absolute moments in one method. Hierarchical and exact search methods are included. All methods return the set of estimated change-points as well as other summary information.
rfcat
is a program to control some radio dongles operating in ISM bands.
Supported dongles:
YARD Stick One
cc1111emk
chronos watch dongle
imme (limited support)
To install the rfcat udev rules, you must extend udev-service-type
with this package. E.g.: (udev-rules-service 'rfcat rfcat)
Rsync is a fast and versatile file copying tool. It can copy locally, to/from another host over any remote shell, or to/from a remote rsync daemon. Its delta-transfer algorithm reduces the amount of data sent over the network by sending only the differences between the source files and the existing files in the destination.
Create aliases for other R names or arbitrarily complex R expressions. Accessing the alias acts as-if the aliased expression were invoked instead, and continuously reflects the current value of that expression: updates to the original expression will be reflected in the alias; and updates to the alias will automatically be reflected in the original expression.
Fit composite Gaussian process (CGP) models as described in Ba and Joseph (2012) "Composite Gaussian Process Models for Emulating Expensive Functions", Annals of Applied Statistics. The CGP model is capable of approximating complex surfaces that are not second-order stationary. Important functions in this package are CGP, print.CGP, summary.CGP, predict.CGP and plotCGP
.
This package provides a set of core functions for handling medical device event data in the context of post-market surveillance, pharmacovigilance, signal detection and trending, and regulatory reporting. Primary inputs are data on events by device and data on exposures by device. Outputs include: standardized device-event and exposure datasets, defined analyses, and time series.
An implementation of semi-supervised regression methods including self-learning and co-training by committee based on Hady, M. F. A., Schwenker, F., & Palm, G. (2009) <doi:10.1007/978-3-642-04274-4_13>. Users can define which set of regressors to use as base models from the caret package, other packages, or custom functions.
RTags is a client/server application that indexes C/C++ code and keeps a persistent file-based database of references, declarations, definitions, symbolnames etc. There’s also limited support for ObjC/ObjC++. It allows you to find symbols by name (including nested class and namespace scope). Most importantly we give you proper follow-symbol and find-references support.
This package includes functions to compute the area under the curve of selected measures: the area under the sensitivity curve (AUSEC), the area under the specificity curve (AUSPC), the area under the accuracy curve (AUACC), and the area under the receiver operating characteristic curve (AUROC). The curves can also be visualized. Support for partial areas is provided.
Finds a low-dimensional embedding of high-dimensional data, conditioning on available manifold information. The current version supports conditional MDS (based on either conditional SMACOF in Bui (2021) <arXiv:2111.13646>
or closed-form solution in Bui (2022) <doi:10.1016/j.patrec.2022.11.007>) and conditional ISOMAP in Bui (2021) <arXiv:2111.13646>
.
Containing the Detrended Fluctuation Analysis (DFA), Detrended Cross-Correlation Analysis (DCCA), Detrended Cross-Correlation Coefficient (rhoDCCA
), Delta Amplitude Detrended Cross-Correlation Coefficient (DeltarhoDCCA
), log amplitude Detrended Fluctuation Analysis (DeltalogDFA
), and the Activity Balance Index, it also includes two DFA automatic methods for identifying crossover points and a Deltalog automatic method for identifying reference channels.
This package implements several methods for testing the variance component parameter in regression models that contain kernel-based random effects, including a maximum of adjusted scores test. Several kernels are supported, including a profile hidden Markov model mutual information kernel for protein sequence. This package is described in Fong et al. (2015) <DOI:10.1093/biostatistics/kxu056>.
This package contains LUE_BIOMASS(),LUE_BIOMASS_VPD()
, LUE_YIELD()
and LUE_YIELD_VPD()
to estimate aboveground biomass and crop yield firstly by calculating the Absorbed Photosynthetically Active Radiation (APAR) and secondly the actual values of light use efficiency with and without vapour presure deficit Shi et al.(2007) <doi:10.2134/agronj2006.0260>.
This package provides functions for the creation, evaluation and test of decision models based in Multi Attribute Utility Theory (MAUT). Can process and evaluate local risk aversion utilities for a set of indexes, compute utilities and weights for the whole decision tree defining the decision model and simulate weights employing Dirichlet distributions under addition constraints in weights.
This package implements the algorithm in Chen, Wang and Samworth (2020) <arxiv:2003.03668> for online detection of sudden mean changes in a sequence of high-dimensional observations. It also implements methods by Mei (2010) <doi:10.1093/biomet/asq010>, Xie and Siegmund (2013) <doi:10.1214/13-AOS1094> and Chan (2017) <doi:10.1214/17-AOS1546>.
Constraint-based causal discovery using the PC algorithm while accounting for a partial node ordering, for example a partial temporal ordering when the data were collected in different waves of a cohort study. Andrews RM, Foraita R, Didelez V, Witte J (2021) <arXiv:2108.13395>
provide a guide how to use tpc to analyse cohort data.
DSS is an R library performing differential analysis for count-based sequencing data. It detects differentially expressed genes (DEGs) from RNA-seq, and differentially methylated loci or regions (DML/DMRs) from bisulfite sequencing (BS-seq). The core of DSS is a dispersion shrinkage method for estimating the dispersion parameter from Gamma-Poisson or Beta-Binomial distributions.
This package lets you record test suite HTTP requests and replay them during future runs. It works by hooking into the webmockr
R package for matching HTTP requests by various rules, and then caching real HTTP responses on disk in cassettes. Subsequent HTTP requests matching any previous requests in the same cassette use a cached HTTP response.
This is a package for regression modeling, testing, estimation, validation, graphics, prediction, and typesetting by storing enhanced model design attributes in the fit. The rms package is a collection of functions that assist with and streamline modeling. It also contains functions for binary and ordinal logistic regression models, ordinal models for continuous Y with a variety of distribution families, and the Buckley-James multiple regression model for right-censored responses, and implements penalized maximum likelihood estimation for logistic and ordinary linear models. The package works with almost any regression model, but it was especially written to work with binary or ordinal regression models, Cox regression, accelerated failure time models, ordinary linear models, the Buckley-James model, generalized least squares for serially or spatially correlated observations, generalized linear models, and quantile regression.
This package contains most of the popular internal and external cluster validation methods ready to use for the most of the outputs produced by functions coming from package "cluster". Package contains also functions and examples of usage for cluster stability approach that might be applied to algorithms implemented in "cluster" package as well as user defined clustering algorithms.
The FAS package implements the bootstrap method for the tuning parameter selection and tuning-free inference on sparse regression coefficient vectors. Currently, the test could be applied to linear and factor-augmented sparse regressions, see Lederer & Vogt (2021, JMLR) <https://www.jmlr.org/papers/volume22/20-539/20-539.pdf> and Beyhum & Striaukas (2023) <arXiv:2307.13364>
.
Implemented are the Wald-type statistic, a permuted version thereof as well as the ANOVA-type statistic for general factorial designs, even with non-normal error terms and/or heteroscedastic variances, for crossed designs with an arbitrary number of factors and nested designs with up to three factors. Friedrich et al. (2017) <doi:10.18637/jss.v079.c01>.