The spicyR
package provides a framework for performing inference on changes in spatial relationships between pairs of cell types for cell-resolution spatial omics technologies. spicyR
consists of three primary steps: (i) summarizing the degree of spatial localization between pairs of cell types for each image; (ii) modelling the variability in localization summary statistics as a function of cell counts and (iii) testing for changes in spatial localizations associated with a response variable.
This package represents a collection of plotting and table output functions for data visualization. Results of various statistical analyses (that are commonly used in social sciences) can be visualized using this package, including simple and cross tabulated frequencies, histograms, box plots, (generalized) linear models, mixed effects models, principal component analysis and correlation matrices, cluster analyses, scatter plots, stacked scales, effects plots of regression models (including interaction terms) and much more. This package supports labelled data.
This package provides bindings to ImageMagick, a comprehensive image processing library. It supports many common formats (PNG, JPEG, TIFF, PDF, etc.) and manipulations (rotate, scale, crop, trim, flip, blur, etc). All operations are vectorized via the Magick++ STL meaning they operate either on a single frame or a series of frames for working with layers, collages, or animation. In RStudio, images are automatically previewed when printed to the console, resulting in an interactive editing environment.
Time series analysis, (dis)aggregation and manipulation, e.g. time series extension, merge, projection, lag, lead, delta, moving and cumulative average and product, selection by index, date and year-period, conversion to daily, monthly, quarterly, (semi)annually. Simultaneous equation models definition, estimation, simulation and forecasting with coefficient restrictions, error autocorrelation, exogenization, add-factors, impact and interim multipliers analysis, conditional equation evaluation, rational expectations, endogenous targeting and model renormalization, structural stability, stochastic simulation and forecast, optimal control.
Multilevel ecological data series (MEDS) are sequences of observations ordered according to temporal/spatial hierarchies that are defined by sample designs, with sample variability confined to ecological factors. Dendroclimatic MEDS of tree rings and climate are modeled into normalized fluctuations of tree growth and aridity. Modeled fluctuations (model frames) are compared with Mantel correlograms on multiple levels defined by sample design. Package implementation can be understood by running examples in modelFrame()
, and muleMan()
functions.
This package implements the efficient estimator of bid-ask spreads from open, high, low, and close prices described in Ardia, Guidotti, & Kroencke (JFE, 2024) <doi:10.1016/j.jfineco.2024.103916>. It also provides an implementation of the estimators described in Roll (JF, 1984) <doi:10.1111/j.1540-6261.1984.tb03897.x>, Corwin & Schultz (JF, 2012) <doi:10.1111/j.1540-6261.2012.01729.x>, and Abdi & Ranaldo (RFS, 2017) <doi:10.1093/rfs/hhx084>.
Hardware-based support for CRC32C cyclic redundancy checksum function is made available for x86_64 systems with SSE2 support as well as for arm64', and detected at build-time via cmake with a software-based fallback. This functionality is exported at the C'-language level for use by other packages. CRC32C is described in RFC 3270 at <https://datatracker.ietf.org/doc/html/rfc3720> and is based on Castagnoli et al <doi:10.1109/26.231911>.
This package provides a collection of ergonomic large language model assistants designed to help you complete repetitive, hard-to-automate tasks quickly. After selecting some code, press the keyboard shortcut you've chosen to trigger the package app, select an assistant, and watch your chore be carried out. While the package ships with a number of chore helpers for R package development, users can create custom helpers just by writing some instructions in a markdown file.
Interconverts between ordered lists and compact string notation. Useful for capturing code lists, and pair-wise codes and decodes, for text storage. Analogous to factor levels and labels. Generics encode()
and decode()
perform interconversion, while codes()
and decodes()
extract components of an encoding. The function encoded()
checks whether something is interpretable as an encoding. If a vector has an encoded guide attribute, as_factor()
uses it to coerce to factor.
The Flow Analysis Summary Statistics Tool for R, fasstr', provides various functions to tidy and screen daily stream discharge data, calculate and visualize various summary statistics and metrics, and compute annual trending and volume frequency analyses. It features useful function arguments for filtering of and handling dates, customizing data and metrics, and the ability to pull daily data directly from the Water Survey of Canada hydrometric database (<https://collaboration.cmc.ec.gc.ca/cmc/hydrometrics/www/>).
This package contains functions to simplify the use of data mining methods (classification, regression, clustering, etc.), for students and beginners in R programming. Various R packages are used and wrappers are built around the main functions, to standardize the use of data mining methods (input/output): it brings a certain loss of flexibility, but also a gain of simplicity. The package name came from the French "Fouille de Données en Master 2 Informatique Décisionnelle".
Can be used for optimal transport between two-dimensional grids with respect to separable cost functions of l^p form. It utilizes the Frank-Wolfe algorithm to approximate so-called pivot measures: one-dimensional transport plans that fully describe the full transport, see G. Auricchio (2021) <arXiv:2105.07278>
. For these, it offers methods for visualization and to extract the corresponding transport plans and costs. Additionally, related functions for one-dimensional optimal transport are available.
This package provides the standard operations for signal processing on graphs: graph Fourier transform, spectral graph wavelet transform, visualization tools. It also implements a data driven method for graph signal denoising/regression, for details see De Loynes, Navarro, Olivier (2019) <arxiv:1906.01882>. The package also provides an interface to the SuiteSparse
Matrix Collection, <https://sparse.tamu.edu/>, a large and widely used set of sparse matrix benchmarks collected from a wide range of applications.
The optimal level of significance is calculated based on a decision-theoretic approach. The optimal level is chosen so that the expected loss from hypothesis testing is minimized. A range of statistical tests are covered, including the test for the population mean, population proportion, and a linear restriction in a multiple regression model. The details are covered in Kim and Choi (2020) <doi:10.1111/abac.12172>, and Kim (2021) <doi:10.1080/00031305.2020.1750484>.
This package implements self-organising maps combined with hierarchical cluster analysis (SOM-HCA) for clustering and visualization of high-dimensional data. The package includes functions to estimate the optimal map size based on various quality measures and to generate a model using the selected dimensions. It also performs hierarchical clustering on the map nodes to group similar units. Documentation about the SOM-HCA method is provided in Pastorelli et al. (2024) <doi:10.1002/xrs.3388>.
Based on the structure of the SPSS version of the Swiss Household Panel (SHP) data, provides a function seqFromWaves()
that seeks the data of variables specified by the user in each of the wave files and collects them as sequences. The function also matches the sequences with variables from other files such as the master files of persons (MP) and households (MH), and social origins (SO). It can also match with activity calendar data (CA).
Allows forecasting time series using nearest neighbors regression Francisco Martinez, Maria P. Frias, Maria D. Perez-Godoy and Antonio J. Rivera (2019) <doi:10.1007/s10462-017-9593-z>. When the forecasting horizon is higher than 1, two multi-step ahead forecasting strategies can be used. The model built is autoregressive, that is, it is only based on the observations of the time series. The nearest neighbors used in a prediction can be consulted and plotted.
This package provides a tool to help create shiny apps for selecting and annotating elements of images. Users must supply images, questions, and answer choices. The user interface is a dynamic shiny app, that displays the images and questions and answer choices. The data generated can be saved to a file that can be used for subsequent analysis. The original purpose was to annotate still images from tennis video for face recognition and emotion detection purposes.
The Bootstrap framework lets you add some JavaScript
functionality to your web site by adding attributes to your HTML tags - Bootstrap takes care of the JavaScript
<https://getbootstrap.com/docs/3.3/javascript/>. If you are using R Markdown or Shiny, you can use these functions to create collapsible sections, accordion panels, modals, tooltips, popovers, and an accordion sidebar framework (not described at Bootstrap site). Please note this package was designed for Bootstrap 3.3.
This package provides an Markov-Chain-Monte-Carlo algorithm for Bayesian t-tests on the effect size. The underlying Gibbs sampler is based on a two-component Gaussian mixture and approximates the posterior distributions of the effect size, the difference of means and difference of standard deviations. A posterior analysis of the effect size via the region of practical equivalence is provided, too. For more details about the Gibbs sampler see Kelter (2019) <arXiv:1906.07524>
.
This package provides functions designed to simulate data that conform to basic unidimensional IRT models (for now 3-parameter binary response models and graded response models) along with Post-Hoc CAT simulations of those models given various item selection methods, ability estimation methods, and termination criteria. See Wainer (2000) <doi:10.4324/9781410605931>, van der Linden & Pashley (2010) <doi:10.1007/978-0-387-85461-8_1>, and Eggen (1999) <doi:10.1177/01466219922031365> for more details.
This package provides a tool to easily run and visualise supervised and unsupervised state of the art customer segmentation. It is built like a pipeline covering the 3 main steps in a segmentation project: pre-processing, modelling, and plotting. Users can either run the pipeline as a whole, or choose to run any one of the three individual steps. It is equipped with a supervised option (tree optimisation) and an unsupervised option (k-clustering) as default models.
This package provides functions to quantify dominant clonal lineages from DNA barcoding time-series data. The package implements clustering of barcode lineage trajectories, based on the assumption that similar temporal dynamics indicate comparable relative fitness. It also identifies persistent clonal lineages across time points. Input data can include lineage frequency tables derived from chromosomal barcoding, mutational libraries, or CRISPR/Cas screens. For more details, see Gagné-Leroux et al. (2024) <doi:10.1101/2024.09.08.611892>.
This is a method for Allele-specific DNA Copy Number Profiling using Next-Generation Sequencing. Given the allele-specific coverage at the variant loci, this program segments the genome into regions of homogeneous allele-specific copy number. It requires, as input, the read counts for each variant allele in a pair of case and control samples. For detection of somatic mutations, the case and control samples can be the tumor and normal sample from the same individual.