This package provides functions for range estimation in birds based on Pennycuick (2008) and Pennycuick (1975), Flight program which compliments Pennycuick (2008) requires manual entry of birds which can be tedious when there are thousands of birds to estimate. Implemented are two ODE methods discussed in Pennycuick (1975) and time-marching computation method "constant muscle mass" as in Pennycuick (1998). See Pennycuick (1975, ISBN:978-0-12-249405-5), Pennycuick (1998) <doi:10.1006/jtbi.1997.0572>, and Pennycuick (2008, ISBN:9780080557816).
This function is an extension of the Small Area Estimation (SAE) model. Geoadditive Small Area Model is a combination of the geoadditive model with the Small Area Estimation (SAE) model, by adding geospatial information to the SAE model. This package refers to J.N.K Rao and Isabel Molina (2015, ISBN: 978-1-118-73578-7), Bocci, C., & Petrucci, A. (2016)<doi:10.1002/9781118814963.ch13>, and Ardiansyah, M., Djuraidah, A., & Kurnia, A. (2018)<doi:10.21082/jpptp.v2n2.2018.p101-110>.
Allows to evaluate Higher Order Assortativity of complex networks defined through objects of class igraph from the package of the same name. The package returns a result also for directed and weighted graphs. References, Arcagni, A., Grassi, R., Stefani, S., & Torriero, A. (2017) <doi:10.1016/j.ejor.2017.04.028> Arcagni, A., Grassi, R., Stefani, S., & Torriero, A. (2021) <doi:10.1016/j.jbusres.2019.10.008> Arcagni, A., Cerqueti, R., & Grassi, R. (2023) <doi:10.48550/arXiv.2304.01737>
.
It uses phenological and productivity-related variables derived from time series of vegetation indexes, such as the Normalized Difference Vegetation Index, to assess ecosystem dynamics and change, which eventually might drive to land degradation. The final result of the Land Productivity Dynamics indicator is a categorical map with 5 classes of land productivity dynamics, ranging from declining to increasing productivity. See www.sciencedirect.com/science/article/pii/S1470160X21010517/ for a description of the methods used in the package to calculate the indicator.
Fits regularization paths for linear regression, GLM, and Cox regression models using lasso or nonconvex penalties, in particular the minimax concave penalty (MCP) and smoothly clipped absolute deviation (SCAD) penalty, with options for additional L2 penalties (the "elastic net" idea). Utilities for carrying out cross-validation as well as post-fitting visualization, summarization, inference, and prediction are also provided. For more information, see Breheny and Huang (2011) <doi:10.1214/10-AOAS388> or visit the ncvreg homepage <https://pbreheny.github.io/ncvreg/>.
Soft-margin support vector machines (SVMs) are a common class of classification models. The training of SVMs usually requires that the data be available all at once in a single batch, however the Stochastic majorization-minimization (SMM) algorithm framework allows for the training of SVMs on streamed data instead Nguyen, Jones & McLachlan(2018)<doi:10.1007/s42081-018-0001-y>
. This package utilizes the SMM framework to provide functions for training SVMs with hinge loss, squared-hinge loss, and logistic loss.
Estimate the receiver operating characteristic (ROC) curve, area under the curve (AUC) and optimal cut-off points for individual classification taking into account complex sampling designs when working with complex survey data. Methods implemented in this package are described in: A. Iparragirre, I. Barrio, I. Arostegui (2024) <doi:10.1002/sta4.635>; A. Iparragirre, I. Barrio, J. Aramendi, I. Arostegui (2022) <doi:10.2436/20.8080.02.121>; A. Iparragirre, I. Barrio (2024) <doi:10.1007/978-3-031-65723-8_7>.
Calculates total survey error (TSE) for one or more surveys, using both scale-dependent and scale-independent metrics. Package works directly from the data set, with no hand calculations required: just upload a properly structured data set (see TESTIND and its documentation), properly input column names (see functions documentation), and run your functions. For more on TSE, see: Weisberg, Herbert (2005, ISBN:0-226-89128-3); Biemer, Paul (2010) <doi:10.1093/poq/nfq058>; Biemer, Paul et.al. (2017, ISBN:9781119041672); etc.
Any package (subsequently called target package') is enabled to provide its users an easily accessible, user-friendly and human readable text file where key=value pairs (used by functions defined in the target package) can be saved. This settings file lives in a location defined by the user of the target package, and its user-defined values remain unchanged even when the author of the target package is introducing or deleting keys, or when the target package is updated or re-installed.
This package implements functions for varying coefficient meta-analysis methods. These methods do not assume effect size homogeneity. Subgroup effect size comparisons, general linear effect size contrasts, and linear models of effect sizes based on varying coefficient methods can be used to describe effect size heterogeneity. Varying coefficient meta-analysis methods do not require the unrealistic assumptions of the traditional fixed-effect and random-effects meta-analysis methods. For details see: Statistical Methods for Psychologists, Volume 5, <https://dgbonett.sites.ucsc.edu/>.
Vector binary tree provides a new data structure, to make your data visiting and management more efficient. If the data has structured column names, it can read these names and factorize them through specific split pattern, then build the mappings within double list, vector binary tree, array and tensor mutually, through which the batched data processing is achievable easily. The methods of array and tensor are also applicable. Detailed methods are described in Chen Zhang et al. (2020) <doi:10.35566/isdsa2019c8>.
Enables interaction with the National Weather Service application programming web-interface for fetching of real-time and forecast meteorological data. Users can provide latitude and longitude, Automated Surface Observing System identifier, or Automated Weather Observing System identifier to fetch recent weather observations and recent forecasts for the given location or station. Additionally, auxiliary functions exist to identify stations nearest to a point, convert wind direction from character to degrees, and fetch active warnings. Results are returned as simple feature objects whenever possible.
This package provides probe-level data for 20 HGU133A and 20 HGU133B arrays which are a subset of arrays from a large ALL study. The data is for the MLL arrays. This data was published in Mary E. Ross, Xiaodong Zhou, Guangchun Song, Sheila A. Shurtleff, Kevin Girtman, W. Kent Williams, Hsi-Che Liu, Rami Mahfouz, Susana C. Raimondi, Noel Lenny, Anami Patel, and James R. Downing (2003) Classification of pediatric acute lymphoblastic leukemia by gene expression profiling Blood 102: 2951-2959.
CIMICE is a tool in the field of tumor phylogenetics and its goal is to build a Markov Chain (called Cancer Progression Markov Chain, CPMC) in order to model tumor subtypes evolution. The input of CIMICE is a Mutational Matrix, so a boolean matrix representing altered genes in a collection of samples. These samples are assumed to be obtained with single-cell DNA analysis techniques and the tool is specifically written to use the peculiarities of this data for the CMPC construction.
This package provides gsubfn
which is like gsub
but can take a replacement function or certain other objects instead of the replacement string. Matches and back references are input to the replacement function and replaced by the function output. gsubfn
can be used to split strings based on content rather than delimiters and for quasi-perl-style string interpolation. The package also has facilities for translating formulas to functions and allowing such formulas in function calls instead of functions.
The RISC-V Proxy Kernel, pk
, is a lightweight application execution environment that can host statically-linked RISC-V ELF binaries. It is designed to support tethered RISC-V implementations with limited I/O capability and thus handles I/O-related system calls by proxying them to a host computer.
This package also contains the Berkeley Boot Loader, bbl
, which is a supervisor execution environment for tethered RISC-V systems. It is designed to host the RISC-V Linux port.
An interface for performing all stages of ADMIXTOOLS analyses (<https://reich.hms.harvard.edu/software>) entirely from R. Wrapper functions (D, f4, f3, etc.) completely automate the generation of intermediate configuration files, run ADMIXTOOLS programs on the command-line, and parse output files to extract values of interest. This allows users to focus on the analysis itself instead of worrying about low-level technical details. A set of complementary functions for processing and filtering of data in the EIGENSTRAT format is also provided.
Saturation of ionic substances in urine is calculated based on sodium, potassium, calcium, magnesium, ammonia, chloride, phosphate, sulfate, oxalate, citrate, ph, and urate. This program is intended for research use, only. The code within is translated from EQUIL2 Visual Basic code based on Werness, et al (1985) "EQUIL2: a BASIC computer program for the calculation of urinary saturation" <doi:10.1016/s0022-5347(17)47703-2> to R. The Visual Basic code was kindly provided by Dr. John Lieske of the Mayo Clinic.
The propensity score is one of the most widely used tools in studying the causal effect of a treatment, intervention, or policy. Given that the propensity score is usually unknown, it has to be estimated, implying that the reliability of many treatment effect estimators depends on the correct specification of the (parametric) propensity score. This package implements the data-driven nonparametric diagnostic tools for detecting propensity score misspecification proposed by Sant'Anna and Song (2019) <doi:10.1016/j.jeconom.2019.02.002>.
This package provides methods for estimation of mean- and quantile-optimal treatment regimes from censored data. Specifically, we have developed distinct functions for three types of right censoring for static treatment using quantile criterion: (1) independent/random censoring, (2) treatment-dependent random censoring, and (3) covariates-dependent random censoring. It also includes a function to estimate quantile-optimal dynamic treatment regimes for independent censored data. Finally, this package also includes a simulation data generative model of a dynamic treatment experiment proposed in literature.
This package provides tools for analyzing spatial cell-cell interactions based on ligand-receptor pairs, including functions for local, regional, and global analysis using spatial transcriptomics data. Integrates with databases like CellChat
<http://www.cellchat.org/>, CellPhoneDB
<https://www.cellphonedb.org/>, Cellinker <https://www.rna-society.org/cellinker/>, ICELLNET <https://github.com/soumelis-lab/ICELLNET>, and ConnectomeDB
<https://humanconnectome.org/software/connectomedb/> to identify ligand-receptor pairs, visualize interactions through heatmaps, chord diagrams, and infer interactions on different spatial scales.
Assists in analyzing the lying behavior of cows from raw data recorded with a triaxial accelerometer attached to the hind leg of a cow. Allows the determination of common measures for lying behavior including total lying duration, the number of lying bouts, and the mean duration of lying bouts. Further capabilities are the description of lying laterality and the calculation of proxies for the level of physical activity of the cow. Reference: Simmler M., Brouwers S. P. (2024) <doi:10.7717/peerj.17036>.
Implement the Tariff algorithm for coding cause-of-death from verbal autopsies. The Tariff method was originally proposed in James et al (2011) <DOI:10.1186/1478-7954-9-31> and later refined as Tariff 2.0 in Serina, et al. (2015) <DOI:10.1186/s12916-015-0527-9>. Note that this package was not developed by authors affiliated with the Institute for Health Metrics and Evaluation and thus unintentional discrepancies may exist between the this implementation and the implementation available from IHME.
Traces information spread through interactions between features, utilising information theory measures and a higher-order generalisation of the concept of widest paths in graphs. In particular, vistla can be used to better understand the results of high-throughput biomedical experiments, by organising the effects of the investigated intervention in a tree-like hierarchy from direct to indirect ones, following the plausible information relay circuits. Due to its higher-order nature, vistla can handle multi-modality and assign multiple roles to a single feature.