This package provides UI widget and layout functions for writing Shiny apps that work well on small screens.
This package provides functions for creating designs for mixture experiments, making ternary contour plots, and making mixture effect plots.
The package contains functions for inferece of target gene regulation by miRNA, based on only target gene expression profile.
Mixed variable optimization for non-linear functions. Can optimize function whose inputs are a combination of continuous, ordered, and unordered variables.
This package provides methods and tools for mixed frequency time series data analysis. Allows estimation, model selection and forecasting for MIDAS regressions.
This package provides tools for estimating, measuring, and analyzing migration data. Designed to assist researchers and analysts in working effectively with migration data.
Evaluation and optimization of the Fisher Information Matrix in NonLinear Mixed Effect Models using Markov Chains Monte Carlo for continuous and discrete data.
Mixed effects cumulative and baseline logit link models for the analysis of ordinal or nominal responses, with non-parametric distribution for the random effects.
The miaViz package implements functions to visualize TreeSummarizedExperiment objects especially in the context of microbiome analysis. Part of the mia family of R/Bioconductor packages.
Curve Fitting of monotonic(sigmoidal) & non-monotonic(J-shaped) dose-response data. Predicting mixture toxicity based on reference models such as concentration addition', independent action', and generalized concentration addition'.
Highly variable gene selection methods, including popular public available methods, and also the mixture of multiple highly variable gene selection methods, <https://github.com/RuzhangZhao/mixhvg>. Reference: <doi:10.1101/2024.08.25.608519>.
Developed for model-based clustering using the finite mixtures of skewed sub-Gaussian stable distributions developed by Teimouri (2022) <arXiv:2205.14067> and estimating parameters of the symmetric stable distribution within the Bayesian framework.
Mixtures of skewed and elliptical distributions are implemented using mixtures of multivariate skew power exponential and power exponential distributions, respectively. A generalized expectation-maximization framework is used for parameter estimation. See citation() for how to cite.
Provide tools exploring miRNA-mRNA relationships, including popular miRNA target prediction methods, ensemble methods that integrate individual methods, functions to get data from online resources, functions to validate the results, and functions to conduct enrichment analyses.
Microbiome time series simulation with generalized Lotka-Volterra model, Self-Organized Instability (SOI), and other models. Hubbell's Neutral model is used to determine the abundance matrix. The resulting abundance matrix is applied to (Tree)SummarizedExperiment objects.
Estimate parameters of linear regression and logistic regression with missing covariates with missing data, perform model selection and prediction, using EM-type algorithms. Jiang W., Josse J., Lavielle M., TraumaBase Group (2020) <doi:10.1016/j.csda.2019.106907>.
This package provides a four step change point detection method that can detect break points with the presence of missing values proposed by Liu and Safikhani (2023) <https://drive.google.com/file/d/1a8sV3RJ8VofLWikTDTQ7W4XJ76cEj4Fg/view?usp=drive_link>.
This package performs treatment assignment for (field) experiments considering available, possibly multivariate and continuous, information (covariates, observable characteristics), that is: forms balanced treatment groups, according to the minMSE-method as proposed by Schneider and Schlather (2017) <DOI:10419/161931>.
This toolkit allows performing continuous-time microsimulation for a wide range of life science (demography, social sciences, epidemiology) applications. Individual life-courses are specified by a continuous-time multi-state model as described in Zinn (2014) <doi:10.34196/IJM.00105>.
This package provides a function for the estimation of mixture of longitudinal factor analysis models using the iterative expectation-maximization algorithm (Ounajim, Slaoui, Louis, Billot, Frasca, Rigoard (2023) <doi:10.1002/sim.9804>) and several tools for visualizing and interpreting the models parameters.
This package provides a toolkit for genomic selection in animal breeding with emphasis on multi-breed and multi-trait nested grouping operations. Streamlines iterative analysis workflows when working with ASReml-R package. Includes utility functions for phenotypic data processing commonly used by animal breeders.
This package takes the MiChip miRNA microarray .grp scanner output files and parses these out, providing summary and plotting functions to analyse MiChip hybridizations. A set of hybridizations is packaged into an ExpressionSet allowing it to be used by otherBioConductor packages.
Fits multiple variable mixtures of various parametric proportional hazard models using the EM-Algorithm. Proportionality restrictions can be imposed on the latent groups and/or on the variables. Several survival distributions can be specified. Missing values and censored values are allowed. Independence is assumed over the single variables.
Estimation of the survivor function for interval censored time-to-event data subject to misclassification using nonparametric maximum likelihood estimation, implementing the methods of Titman (2017) <doi:10.1007/s11222-016-9705-7>. Misclassification probabilities can either be specified as fixed or estimated. Models with time dependent misclassification may also be fitted.