Takes a list of character strings and forms an adjacency matrix for the times the specified characters appear together in the strings provided. For use in social network analysis and data wrangling. Simple package, comprised of three functions.
Integrating a stratified structure in the population in a sampling design can considerably reduce the variance of the Horvitz-Thompson estimator. We propose in this package different methods to handle the selection of a balanced sample in stratified population. For more details see Raphaël Jauslin, Esther Eustache and Yves Tillé (2021) <doi:10.1007/s42081-021-00134-y>. The package propose also a method based on optimal transport and balanced sampling, see Raphaël Jauslin and Yves Tillé <doi:10.1016/j.jspi.2022.12.003>.
This package provides a toolkit for stratified medicine, subgroup identification, and precision medicine. Current tools include (1) filtering models (reduce covariate space), (2) patient-level estimate models (counterfactual patient-level quantities, such as the conditional average treatment effect), (3) subgroup identification models (find subsets of patients with similar treatment effects), and (4) treatment effect estimation and inference (for the overall population and discovered subgroups). These tools can be customized and are directly used in PRISM (patient response identifiers for stratified medicine; Jemielita and Mehrotra 2019 <arXiv:1912.03337>
. This package is in beta and will be continually updated.
This package performs Stratified Covariate Balancing with Markov blanket feature selection and use of synthetic cases. See Alemi et al. (2016) <DOI:10.1111/1475-6773.12628>.
Explains the behavior of a time series by decomposing it into its trend, seasonality and residuals. It is built to perform very well in the presence of significant level shifts. It is designed to play well with any breakpoint algorithm and any smoothing algorithm. Currently defaults to lowess for smoothing and strucchange for breakpoint identification. The package is useful in areas such as trend analysis, time series decomposition, breakpoint identification and anomaly detection.
This package contains useful helper functions for dealing with structural variants in VCF format. The packages contains functions for parsing VCFs from a number of popular callers as well as functions for dealing with breakpoints involving two separate genomic loci encoded as GRanges objects.