_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-ecocbo 0.12.0
Propagated dependencies: r-vegan@2.6-8 r-ssp@1.0.1 r-sampling@2.10 r-rlang@1.1.4 r-ggpubr@0.6.0 r-ggplot2@3.5.1 r-foreach@1.5.2 r-dosnow@1.0.20 r-doparallel@1.0.17
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://cran.r-project.org/package=ecocbo
Licenses: GPL 3+
Synopsis: Calculating Optimum Sampling Effort in Community Ecology
Description:

This package provides a system for calculating the optimal sampling effort, based on the ideas of "Ecological cost-benefit optimization" as developed by A. Underwood (1997, ISBN 0 521 55696 1). Data is obtained from simulated ecological communities with prep_data() which formats and arranges the initial data, and then the optimization follows the following procedure of four functions: (1) scompvar() calculates the variation components necessary for (2) sim_cbo() to calculate the optimal combination of number of sites and samples depending on either an economic budget or on a desired statistical accuracy. Additionally, (3) sim_beta() estimates statistical power and type 2 error by using Permutational Multivariate Analysis of Variance, and (6) plot_power() represents the results of the previous function.

r-mgwnbr 0.2.0
Propagated dependencies: r-sp@2.1-4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=mgwnbr
Licenses: GPL 3
Synopsis: Multiscale Geographically Weighted Negative Binomial Regression
Description:

Fits a geographically weighted regression model with different scales for each covariate. Uses the negative binomial distribution as default, but also accepts the normal, Poisson, or logistic distributions. Can fit the global versions of each regression and also the geographically weighted alternatives with only one scale, since they are all particular cases of the multiscale approach. Hanchen Yu (2024). "Exploring Multiscale Geographically Weighted Negative Binomial Regression", Annals of the American Association of Geographers <doi:10.1080/24694452.2023.2289986>. Fotheringham AS, Yang W, Kang W (2017). "Multiscale Geographically Weighted Regression (MGWR)", Annals of the American Association of Geographers <doi:10.1080/24694452.2017.1352480>. Da Silva AR, Rodrigues TCV (2014). "Geographically Weighted Negative Binomial Regression - incorporating overdispersion", Statistics and Computing <doi:10.1007/s11222-013-9401-9>.

r-sommer 4.4.1
Propagated dependencies: r-rcppprogress@0.4.2 r-rcpparmadillo@14.0.2-1 r-rcpp@1.0.13-1 r-matrix@1.7-1 r-mass@7.3-61 r-crayon@1.5.3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/covaruber/sommer
Licenses: GPL 2+
Synopsis: Solving Mixed Model Equations in R
Description:

Structural multivariate-univariate linear mixed model solver for estimation of multiple random effects with unknown variance-covariance structures (e.g., heterogeneous and unstructured) and known covariance among levels of random effects (e.g., pedigree and genomic relationship matrices) (Covarrubias-Pazaran, 2016 <doi:10.1371/journal.pone.0156744>; Maier et al., 2015 <doi:10.1016/j.ajhg.2014.12.006>; Jensen et al., 1997). REML estimates can be obtained using the Direct-Inversion Newton-Raphson and Direct-Inversion Average Information algorithms for the problems r x r (r being the number of records) or using the Henderson-based average information algorithm for the problem c x c (c being the number of coefficients to estimate). Spatial models can also be fitted using the two-dimensional spline functionality available.

r-somenv 1.1.2
Propagated dependencies: r-shinycustomloader@0.9.0 r-shinycssloaders@1.1.0 r-shiny@1.8.1 r-rlist@0.4.6.2 r-plyr@1.8.9 r-openair@2.18-2 r-kohonen@3.0.12 r-dplyr@1.1.4 r-colourpicker@1.3.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/SomEnv/somenv
Licenses: GPL 3
Synopsis: SOM Algorithm for the Analysis of Multivariate Environmental Data
Description:

Analysis of multivariate environmental high frequency data by Self-Organizing Map and k-means clustering algorithms. By means of the graphical user interface it provides a comfortable way to elaborate by self-organizing map algorithm rather big datasets (txt files up to 100 MB ) obtained by environmental high-frequency monitoring by sensors/instruments. The functions present in the package are based on kohonen and openair packages implemented by functions embedding Vesanto et al. (2001) <http://www.cis.hut.fi/projects/somtoolbox/package/papers/techrep.pdf> heuristic rules for map initialization parameters, k-means clustering algorithm and map features visualization. Cluster profiles visualization as well as graphs dedicated to the visualization of time-dependent variables Licen et al. (2020) <doi:10.4209/aaqr.2019.08.0414> are provided.

r-susier 0.12.35
Propagated dependencies: r-reshape@0.8.9 r-mixsqp@0.3-54 r-matrixstats@1.4.1 r-matrix@1.7-1 r-ggplot2@3.5.1 r-crayon@1.5.3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/stephenslab/susieR
Licenses: Modified BSD
Synopsis: Sum of Single Effects Linear Regression
Description:

This package implements methods for variable selection in linear regression based on the "Sum of Single Effects" (SuSiE) model, as described in Wang et al (2020) <DOI:10.1101/501114> and Zou et al (2021) <DOI:10.1101/2021.11.03.467167>. These methods provide simple summaries, called "Credible Sets", for accurately quantifying uncertainty in which variables should be selected. The methods are motivated by genetic fine-mapping applications, and are particularly well-suited to settings where variables are highly correlated and detectable effects are sparse. The fitting algorithm, a Bayesian analogue of stepwise selection methods called "Iterative Bayesian Stepwise Selection" (IBSS), is simple and fast, allowing the SuSiE model be fit to large data sets (thousands of samples and hundreds of thousands of variables).

r-altopt 0.1.2
Propagated dependencies: r-lattice@0.22-6 r-cubature@2.1.1
Channel: guix-cran
Location: guix-cran/packages/a.scm (guix-cran packages a)
Home page: https://cran.r-project.org/package=ALTopt
Licenses: GPL 3
Synopsis: Optimal Experimental Designs for Accelerated Life Testing
Description:

This package creates the optimal (D, U and I) designs for the accelerated life testing with right censoring or interval censoring. It uses generalized linear model (GLM) approach to derive the asymptotic variance-covariance matrix of regression coefficients. The failure time distribution is assumed to follow Weibull distribution with a known shape parameter and log-linear link functions are used to model the relationship between failure time parameters and stress variables. The acceleration model may have multiple stress factors, although most ALTs involve only two or less stress factors. ALTopt package also provides several plotting functions including contour plot, Fraction of Use Space (FUS) plot and Variance Dispersion graphs of Use Space (VDUS) plot. For more details, see Seo and Pan (2015) <doi:10.32614/RJ-2015-029>.

r-canopy 1.3.0
Propagated dependencies: r-scatterplot3d@0.3-44 r-pheatmap@1.0.12 r-fields@16.3 r-ape@5.8
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/yuchaojiang/Canopy
Licenses: GPL 2
Synopsis: Accessing Intra-Tumor Heterogeneity and Tracking Longitudinal and Spatial Clonal Evolutionary History by Next-Generation Sequencing
Description:

This package provides a statistical framework and computational procedure for identifying the sub-populations within a tumor, determining the mutation profiles of each subpopulation, and inferring the tumor's phylogenetic history. The input are variant allele frequencies (VAFs) of somatic single nucleotide alterations (SNAs) along with allele-specific coverage ratios between the tumor and matched normal sample for somatic copy number alterations (CNAs). These quantities can be directly taken from the output of existing software. Canopy provides a general mathematical framework for pooling data across samples and sites to infer the underlying parameters. For SNAs that fall within CNA regions, Canopy infers their temporal ordering and resolves their phase. When there are multiple evolutionary configurations consistent with the data, Canopy outputs all configurations along with their confidence assessment.

r-intsdm 2.1.1
Propagated dependencies: r-units@0.8-5 r-tidyterra@0.7.2 r-terra@1.7-83 r-sf@1.0-19 r-rgbif@3.8.1 r-r6@2.5.1 r-pointedsdms@2.1.3 r-inlabru@2.12.0 r-giscor@0.6.1 r-ggplot2@3.5.1 r-geodata@0.6-2 r-fmesher@0.2.0 r-blockcv@3.1-5
Channel: guix-cran
Location: guix-cran/packages/i.scm (guix-cran packages i)
Home page: https://cran.r-project.org/package=intSDM
Licenses: GPL 3+
Synopsis: Reproducible Integrated Species Distribution Models Across Norway using 'INLA'
Description:

Integration of disparate datasets is needed in order to make efficient use of all available data and thereby address the issues currently threatening biodiversity. Data integration is a powerful modeling framework which allows us to combine these datasets together into a single model, yet retain the strengths of each individual dataset. We therefore introduce the package, intSDM': an R package designed to help ecologists develop a reproducible workflow of integrated species distribution models, using data both provided from the user as well as data obtained freely online. An introduction to data integration methods is discussed in Issac, Jarzyna, Keil, Dambly, Boersch-Supan, Browning, Freeman, Golding, Guillera-Arroita, Henrys, Jarvis, Lahoz-Monfort, Pagel, Pescott, Schmucki, Simmonds and Oâ Hara (2020) <doi:10.1016/j.tree.2019.08.006>.

r-joiner 1.2.8
Propagated dependencies: r-survival@3.7-0 r-statmod@1.5.0 r-nlme@3.1-166 r-mass@7.3-61 r-lattice@0.22-6
Channel: guix-cran
Location: guix-cran/packages/j.scm (guix-cran packages j)
Home page: https://github.com/graemeleehickey/joineR/
Licenses: GPL 3 FSDG-compatible
Synopsis: Joint Modelling of Repeated Measurements and Time-to-Event Data
Description:

Analysis of repeated measurements and time-to-event data via random effects joint models. Fits the joint models proposed by Henderson and colleagues <doi:10.1093/biostatistics/1.4.465> (single event time) and by Williamson and colleagues (2008) <doi:10.1002/sim.3451> (competing risks events time) to a single continuous repeated measure. The time-to-event data is modelled using a (cause-specific) Cox proportional hazards regression model with time-varying covariates. The longitudinal outcome is modelled using a linear mixed effects model. The association is captured by a latent Gaussian process. The model is estimated using am Expectation Maximization algorithm. Some plotting functions and the variogram are also included. This project is funded by the Medical Research Council (Grant numbers G0400615 and MR/M013227/1).

r-simnph 0.5.7
Propagated dependencies: r-tidyr@1.3.1 r-tibble@3.2.1 r-survival@3.7-0 r-stringr@1.5.1 r-simdesign@2.17.1 r-rlang@1.1.4 r-purrr@1.0.2 r-nphrct@0.1.1 r-nph@2.1 r-minipch@0.4.0 r-dplyr@1.1.4 r-car@3.1-3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://simnph.github.io/SimNPH/
Licenses: FSDG-compatible
Synopsis: Simulate Non-Proportional Hazards
Description:

This package provides a toolkit for simulation studies concerning time-to-event endpoints with non-proportional hazards. SimNPH encompasses functions for simulating time-to-event data in various scenarios, simulating different trial designs like fixed-followup, event-driven, and group sequential designs. The package provides functions to calculate the true values of common summary statistics for the implemented scenarios and offers common analysis methods for time-to-event data. Helper functions for running simulations with the SimDesign package and for aggregating and presenting the results are also included. Results of the conducted simulation study are available in the paper: "A Comparison of Statistical Methods for Time-To-Event Analyses in Randomized Controlled Trials Under Non-Proportional Hazards", Klinglmüller et al. (2025) <doi:10.1002/sim.70019>.

r-bttest 0.10.3
Propagated dependencies: r-rcpparmadillo@14.0.2-1 r-rcpp@1.0.13-1
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://github.com/Paul-Haimerl/BTtest
Licenses: GPL 3+
Synopsis: Estimate the Number of Factors in Large Nonstationary Datasets
Description:

Large panel data sets are often subject to common trends. However, it can be difficult to determine the exact number of these common factors and analyse their properties. The package implements the Barigozzi and Trapani (2022) <doi:10.1080/07350015.2021.1901719> test, which not only provides an efficient way of estimating the number of common factors in large nonstationary panel data sets, but also gives further insights on factor classes. The routine identifies the existence of (i) a factor subject to a linear trend, (ii) the number of zero-mean I(1) and (iii) zero-mean I(0) factors. Furthermore, the package includes the Integrated Panel Criteria by Bai (2004) <doi:10.1016/j.jeconom.2003.10.022> that provide a complementary measure for the number of factors.

r-cnvreg 1.0
Propagated dependencies: r-tidyr@1.3.1 r-matrix@1.7-1 r-glmnet@4.1-8 r-foreach@1.5.2 r-dplyr@1.1.4 r-doparallel@1.0.17
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=CNVreg
Licenses: GPL 3
Synopsis: CNV-Profile Regression for Copy Number Variants Association Analysis with Penalized Regression
Description:

This package performs copy number variants association analysis with Lasso and Weighted Fusion penalized regression. Creates a "CNV profile curve" to represent an individualâ s CNV events across a genomic region so to capture variations in CNV length and dosage. When evaluating association, the CNV profile curve is directly used as a predictor in the regression model, avoiding the need to predefine CNV loci. CNV profile regression estimates CNV effects at each genome position, making the results comparable across different studies. The penalization encourages sparsity in variable selection with a Lasso penalty and encourages effect smoothness between consecutive CNV events with a weighted fusion penalty, where the weight controls the level of smoothing between adjacent CNVs. For more details, see Si (2024) <doi:10.1101/2024.11.23.624994>.

r-expdes 1.2.2
Propagated dependencies: r-stargazer@5.2.3
Channel: guix-cran
Location: guix-cran/packages/e.scm (guix-cran packages e)
Home page: https://cran.r-project.org/package=ExpDes
Licenses: GPL 2+
Synopsis: Experimental Designs Package
Description:

Package for analysis of simple experimental designs (CRD, RBD and LSD), experiments in double factorial schemes (in CRD and RBD), experiments in a split plot in time schemes (in CRD and RBD), experiments in double factorial schemes with an additional treatment (in CRD and RBD), experiments in triple factorial scheme (in CRD and RBD) and experiments in triple factorial schemes with an additional treatment (in CRD and RBD), performing the analysis of variance and means comparison by fitting regression models until the third power (quantitative treatments) or by a multiple comparison test, Tukey test, test of Student-Newman-Keuls (SNK), Scott-Knott, Duncan test, t test (LSD) and Bonferroni t test (protected LSD) - for qualitative treatments; residual analysis (Ferreira, Cavalcanti and Nogueira, 2014) <doi:10.4236/am.2014.519280>.

r-hgraph 0.1.0
Propagated dependencies: r-knitr@1.49
Channel: guix-cran
Location: guix-cran/packages/h.scm (guix-cran packages h)
Home page: https://cran.r-project.org/package=HGraph
Licenses: GPL 2
Synopsis: Use Graph Structure to Travel
Description:

It is used to travel graphs, by using DFS and BFS to get the path from node to each leaf node. Depth first traversal(DFS) is a recursive algorithm for searching all the vertices of a graph or tree data structure. Traversal means visiting all the nodes of a graph. Breadth first traversal(BFS) algorithm is used to search a tree or graph data structure for a node that meets a set of criteria. It starts at the treeâ s root or graph and searches/visits all nodes at the current depth level before moving on to the nodes at the next depth level. Also, it provides the matrix which is reachable between each node. Implement reference about Baruch Awerbuch (1985) <doi:10.1016/0020-0190(85)90083-3>.

r-mabacr 0.1.0
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/slabaverse/mabacR
Licenses: GPL 2+
Synopsis: Assisting Decision Makers
Description:

Easy implementation of the MABAC multi-criteria decision method, that was introduced by PamuÄ ar and Ä iroviÄ in the work entitled: "The selection of transport and handling resources in logistics centers using Multi-Attributive Border Approximation area Comparison (MABAC)" - <doi:10.1016/j.eswa.2014.11.057> - which aimed to choose implements for logistics centers. This package receives data, preferably in a spreadsheet, reads it and applies the mathematical algorithms inherent to the MABAC method to generate a ranking with the optimal solution according to the established criteria, weights and type of criteria. The data will be normalized, weighted by the weights, the border area will be determined, the distances to this border area will be calculated and finally a ranking with the optimal option will be generated.

r-netsem 0.6.2
Propagated dependencies: r-svglite@2.1.3 r-segmented@2.1-3 r-rsvg@2.6.1 r-png@0.1-8 r-mass@7.3-61 r-magrittr@2.0.3 r-knitr@1.49 r-htmlwidgets@1.6.4 r-gtools@3.9.5 r-diagrammersvg@0.1 r-diagrammer@1.0.11
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://cran.r-project.org/package=netSEM
Licenses: GPL 2+
Synopsis: Network Structural Equation Modeling
Description:

The network structural equation modeling conducts a network statistical analysis on a data frame of coincident observations of multiple continuous variables [1]. It builds a pathway model by exploring a pool of domain knowledge guided candidate statistical relationships between each of the variable pairs, selecting the best fit on the basis of a specific criteria such as adjusted r-squared value. This material is based upon work supported by the U.S. National Science Foundation Award EEC-2052776 and EEC-2052662 for the MDS-Rely IUCRC Center, under the NSF Solicitation: NSF 20-570 Industry-University Cooperative Research Centers Program [1] Bruckman, Laura S., Nicholas R. Wheeler, Junheng Ma, Ethan Wang, Carl K. Wang, Ivan Chou, Jiayang Sun, and Roger H. French. (2013) <doi:10.1109/ACCESS.2013.2267611>.

r-posetr 1.1.4
Propagated dependencies: r-rdpack@2.6.1 r-rcpp@1.0.13-1 r-igraph@2.1.1
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://cran.r-project.org/package=POSetR
Licenses: GPL 2+
Synopsis: Partially Ordered Sets in R
Description:

This package provides a set of basic tools for generating, analyzing, summarizing and visualizing finite partially ordered sets. In particular, it implements flexible and very efficient algorithms for the extraction of linear extensions and for the computation of mutual ranking probabilities and other user-defined functionals, over them. The package is meant as a computationally efficient "engine", for the implementation of data analysis procedures, on systems of multidimensional ordinal indicators and partially ordered data, in the spirit of Fattore, M. (2016) "Partially ordered sets and the measurement of multidimensional ordinal deprivation", Social Indicators Research <DOI:10.1007/s11205-015-1059-6>, and Fattore M. and Arcagni, A. (2018) "A reduced posetic approach to the measurement of multidimensional ordinal deprivation", Social Indicators Research <DOI:10.1007/s11205-016-1501-4>.

r-sdefsr 0.7.22
Propagated dependencies: r-shiny@1.8.1 r-ggplot2@3.5.1 r-foreign@0.8-87
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/SIMIDAT/SDEFSR
Licenses: LGPL 3+
Synopsis: Subgroup Discovery with Evolutionary Fuzzy Systems
Description:

Implementation of evolutionary fuzzy systems for the data mining task called "subgroup discovery". In particular, the algorithms presented in this package are: M. J. del Jesus, P. Gonzalez, F. Herrera, M. Mesonero (2007) <doi:10.1109/TFUZZ.2006.890662> M. J. del Jesus, P. Gonzalez, F. Herrera (2007) <doi:10.1109/MCDM.2007.369416> C. J. Carmona, P. Gonzalez, M. J. del Jesus, F. Herrera (2010) <doi:10.1109/TFUZZ.2010.2060200> C. J. Carmona, V. Ruiz-Rodado, M. J. del Jesus, A. Weber, M. Grootveld, P. González, D. Elizondo (2015) <doi:10.1016/j.ins.2014.11.030> It also provide a Shiny App to ease the analysis. The algorithms work with data sets provided in KEEL, ARFF and CSV format and also with data.frame objects.

r-tidylo 0.2.0
Propagated dependencies: r-rlang@1.1.4 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://juliasilge.github.io/tidylo/
Licenses: Expat
Synopsis: Weighted Tidy Log Odds Ratio
Description:

How can we measure how the usage or frequency of some feature, such as words, differs across some group or set, such as documents? One option is to use the log odds ratio, but the log odds ratio alone does not account for sampling variability; we haven't counted every feature the same number of times so how do we know which differences are meaningful? Enter the weighted log odds, which tidylo provides an implementation for, using tidy data principles. In particular, here we use the method outlined in Monroe, Colaresi, and Quinn (2008) <doi:10.1093/pan/mpn018> to weight the log odds ratio by a prior. By default, the prior is estimated from the data itself, an empirical Bayes approach, but an uninformative prior is also available.

r-epimix 1.8.0
Propagated dependencies: r-tidyr@1.3.1 r-tibble@3.2.1 r-summarizedexperiment@1.36.0 r-s4vectors@0.44.0 r-rpmm@1.25 r-rlang@1.1.4 r-rcurl@1.98-1.16 r-rcolorbrewer@1.1-3 r-r-matlab@3.7.0 r-progress@1.2.3 r-plyr@1.8.9 r-limma@3.62.1 r-iranges@2.40.0 r-impute@1.80.0 r-ggplot2@3.5.1 r-genomicranges@1.58.0 r-genomicfeatures@1.58.0 r-genomeinfodb@1.42.0 r-foreach@1.5.2 r-experimenthub@2.14.0 r-epimix-data@1.8.0 r-elmer-data@2.30.0 r-dplyr@1.1.4 r-downloader@0.4 r-dosnow@1.0.20 r-doparallel@1.0.17 r-data-table@1.16.2 r-biomart@2.62.0 r-biobase@2.66.0 r-annotationhub@3.14.0 r-annotationdbi@1.68.0
Channel: guix-bioc
Location: guix-bioc/packages/e.scm (guix-bioc packages e)
Home page: https://bioconductor.org/packages/EpiMix
Licenses: GPL 3
Synopsis: EpiMix: an integrative tool for the population-level analysis of DNA methylation
Description:

EpiMix is a comprehensive tool for the integrative analysis of high-throughput DNA methylation data and gene expression data. EpiMix enables automated data downloading (from TCGA or GEO), preprocessing, methylation modeling, interactive visualization and functional annotation.To identify hypo- or hypermethylated CpG sites across physiological or pathological conditions, EpiMix uses a beta mixture modeling to identify the methylation states of each CpG probe and compares the methylation of the experimental group to the control group.The output from EpiMix is the functional DNA methylation that is predictive of gene expression. EpiMix incorporates specialized algorithms to identify functional DNA methylation at various genetic elements, including proximal cis-regulatory elements of protein-coding genes, distal enhancers, and genes encoding microRNAs and lncRNAs.

r-mpo-db 0.99.8
Propagated dependencies: r-annotationdbi@1.68.0 r-annotationhub@3.14.0 r-biocfilecache@2.14.0 r-dbi@1.2.3
Channel: guix
Location: gnu/packages/bioconductor.scm (gnu packages bioconductor)
Home page: https://github.com/YuLab-SMU/MPO.db
Licenses: Artistic License 2.0
Synopsis: Set of annotation maps describing the Mouse Phenotype Ontology
Description:

This is the human disease ontology R package HDO.db, which provides the semantic relationship between human diseases. Relying on the DOSE and GOSemSim packages, this package can carry out disease enrichment and semantic similarity analyses. Many biological studies are achieved through mouse models, and a large number of data indicate the association between genotypes and phenotypes or diseases. The study of model organisms can be transformed into useful knowledge about normal human biology and disease to facilitate treatment and early screening for diseases. Organism-specific genotype-phenotypic associations can be applied to cross-species phenotypic studies to clarify previously unknown phenotypic connections in other species. Using the same principle to diseases can identify genetic associations and even help to identify disease associations that are not obvious.

r-calacs 2.2.2
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://cran.r-project.org/package=calACS
Licenses: GPL 2+ GPL 3+
Synopsis: Calculations for All Common Subsequences
Description:

This package implements several string comparison algorithms, including calACS (count all common subsequences), lenACS (calculate the lengths of all common subsequences), and lenLCS (calculate the length of the longest common subsequence). Some algorithms differentiate between the more strict definition of subsequence, where a common subsequence cannot be separated by any other items, from its looser counterpart, where a common subsequence can be interrupted by other items. This difference is shown in the suffix of the algorithm (-Strict vs -Loose). For example, q-w is a common subsequence of q-w-e-r and q-e-w-r on the looser definition, but not on the more strict definition. calACSLoose Algorithm from Wang, H. All common subsequences (2007) IJCAI International Joint Conference on Artificial Intelligence, pp. 635-640.

r-mycaas 0.0.1
Propagated dependencies: r-shiny@1.8.1 r-rpref@1.4.0 r-rlang@1.1.4 r-igraph@2.1.1 r-ggplot2@3.5.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=mycaas
Licenses: Expat
Synopsis: My Computerized Adaptive Assessment
Description:

Implementation of adaptive assessment procedures based on Knowledge Space Theory (KST, Doignon & Falmagne, 1999 <ISBN:9783540645016>) and Formal Psychological Assessment (FPA, Spoto, Stefanutti & Vidotto, 2010 <doi:10.3758/BRM.42.1.342>) frameworks. An adaptive assessment is a type of evaluation that adjusts the difficulty and nature of subsequent questions based on the test taker's responses to previous ones. The package contains functions to perform and simulate an adaptive assessment. Moreover, it is integrated with two Shiny interfaces, making it both accessible and user-friendly. The package has been partially funded by the European Union - NextGenerationEU and by the Ministry of University and Research (MUR), National Recovery and Resilience Plan (NRRP), Mission 4, Component 2, Investment 1.5, project â RAISE - Robotics and AI for Socio-economic Empowermentâ (ECS00000035).

r-womblr 1.0.5
Propagated dependencies: r-rcpparmadillo@14.0.2-1 r-rcpp@1.0.13-1 r-mvtnorm@1.3-2 r-msm@1.8.2
Channel: guix-cran
Location: guix-cran/packages/w.scm (guix-cran packages w)
Home page: https://cran.r-project.org/package=womblR
Licenses: GPL 2+
Synopsis: Spatiotemporal Boundary Detection Model for Areal Unit Data
Description:

This package implements a spatiotemporal boundary detection model with a dissimilarity metric for areal data with inference in a Bayesian setting using Markov chain Monte Carlo (MCMC). The response variable can be modeled as Gaussian (no nugget), probit or Tobit link and spatial correlation is introduced at each time point through a conditional autoregressive (CAR) prior. Temporal correlation is introduced through a hierarchical structure and can be specified as exponential or first-order autoregressive. Full details of the package can be found in the accompanying vignette. Furthermore, the details of the package can be found in "Diagnosing Glaucoma Progression with Visual Field Data Using a Spatiotemporal Boundary Detection Method", by Berchuck et al (2018), <arXiv:1805.11636>. The paper is in press at the Journal of the American Statistical Association.

Page: 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511
Total results: 36249