_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-corral 1.18.0
Propagated dependencies: r-transport@0.15-4 r-summarizedexperiment@1.38.1 r-singlecellexperiment@1.30.1 r-reshape2@1.4.4 r-pals@1.10 r-multiassayexperiment@1.34.0 r-matrix@1.7-3 r-irlba@2.3.5.1 r-gridextra@2.3 r-ggthemes@5.1.0 r-ggplot2@3.5.2
Channel: guix-bioc
Location: guix-bioc/packages/c.scm (guix-bioc packages c)
Home page: https://bioconductor.org/packages/corral
Licenses: GPL 2
Synopsis: Correspondence Analysis for Single Cell Data
Description:

Correspondence analysis (CA) is a matrix factorization method, and is similar to principal components analysis (PCA). Whereas PCA is designed for application to continuous, approximately normally distributed data, CA is appropriate for non-negative, count-based data that are in the same additive scale. The corral package implements CA for dimensionality reduction of a single matrix of single-cell data, as well as a multi-table adaptation of CA that leverages data-optimized scaling to align data generated from different sequencing platforms by projecting into a shared latent space. corral utilizes sparse matrices and a fast implementation of SVD, and can be called directly on Bioconductor objects (e.g., SingleCellExperiment) for easy pipeline integration. The package also includes additional options, including variations of CA to address overdispersion in count data (e.g., Freeman-Tukey chi-squared residual), as well as the option to apply CA-style processing to continuous data (e.g., proteomic TOF intensities) with the Hellinger distance adaptation of CA.

r-dcovts 1.4
Propagated dependencies: r-rfast2@0.1.5.4 r-rfast@2.1.5.1 r-foreach@1.5.2 r-doparallel@1.0.17 r-dcov@0.1.1
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://cran.r-project.org/package=dCovTS
Licenses: GPL 2+
Synopsis: Distance Covariance and Correlation for Time Series Analysis
Description:

Computing and plotting the distance covariance and correlation function of a univariate or a multivariate time series. Both versions of biased and unbiased estimators of distance covariance and correlation are provided. Test statistics for testing pairwise independence are also implemented. Some data sets are also included. References include: a) Edelmann Dominic, Fokianos Konstantinos and Pitsillou Maria (2019). An Updated Literature Review of Distance Correlation and Its Applications to Time Series'. International Statistical Review, 87(2): 237--262. <doi:10.1111/insr.12294>. b) Fokianos Konstantinos and Pitsillou Maria (2018). Testing independence for multivariate time series via the auto-distance correlation matrix'. Biometrika, 105(2): 337--352. <doi:10.1093/biomet/asx082>. c) Fokianos Konstantinos and Pitsillou Maria (2017). Consistent testing for pairwise dependence in time series'. Technometrics, 59(2): 262--270. <doi:10.1080/00401706.2016.1156024>. d) Pitsillou Maria and Fokianos Konstantinos (2016). dCovTS: Distance Covariance/Correlation for Time Series'. R Journal, 8(2):324-340. <doi:10.32614/RJ-2016-049>.

r-fastts 1.0.2
Propagated dependencies: r-yardstick@1.3.2 r-rlang@1.1.6 r-rcpproll@0.3.1 r-ncvreg@3.15.0 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/f.scm (guix-cran packages f)
Home page: https://petersonr.github.io/fastTS/
Licenses: GPL 3+
Synopsis: Fast Time Series Modeling for Seasonal Series with Exogenous Variables
Description:

An implementation of sparsity-ranked lasso and related methods for time series data. This methodology is especially useful for large time series with exogenous features and/or complex seasonality. Originally described in Peterson and Cavanaugh (2022) <doi:10.1007/s10182-021-00431-7> in the context of variable selection with interactions and/or polynomials, ranked sparsity is a philosophy with methods useful for variable selection in the presence of prior informational asymmetry. This situation exists for time series data with complex seasonality, as shown in Peterson and Cavanaugh (2024) <doi:10.1177/1471082X231225307>, which also describes this package in greater detail. The sparsity-ranked penalization methods for time series implemented in fastTS can fit large/complex/high-frequency time series quickly, even with a high-dimensional exogenous feature set. The method is considerably faster than its competitors, while often producing more accurate predictions. Also included is a long hourly series of arrivals into the University of Iowa Emergency Department with concurrent local temperature.

r-nnspat 0.1.2
Propagated dependencies: r-rdpack@2.6.4 r-pcds@0.1.8 r-mass@7.3-65
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://cran.r-project.org/package=nnspat
Licenses: GPL 2
Synopsis: Nearest Neighbor Methods for Spatial Patterns
Description:

This package contains the functions for testing the spatial patterns (of segregation, spatial symmetry, association, disease clustering, species correspondence, and reflexivity) based on nearest neighbor relations, especially using contingency tables such as nearest neighbor contingency tables (Ceyhan (2010) <doi:10.1007/s10651-008-0104-x> and Ceyhan (2017) <doi:10.1016/j.jkss.2016.10.002> and references therein), nearest neighbor symmetry contingency tables (Ceyhan (2014) <doi:10.1155/2014/698296>), species correspondence contingency tables and reflexivity contingency tables (Ceyhan (2018) <doi:10.2436/20.8080.02.72> for two (or higher) dimensional data. The package also contains functions for generating patterns of segregation, association, uniformity in a multi-class setting (Ceyhan (2014) <doi:10.1007/s00477-013-0824-9>), and various non-random labeling patterns for disease clustering in two dimensional cases (Ceyhan (2014) <doi:10.1002/sim.6053>), and for visualization of all these patterns for the two dimensional data. The tests are usually (asymptotic) normal z-tests or chi-square tests.

r-mistyr 1.16.0
Propagated dependencies: r-withr@3.0.2 r-tidyselect@1.2.1 r-tidyr@1.3.1 r-tibble@3.2.1 r-stringr@1.5.1 r-rlist@0.4.6.2 r-rlang@1.1.6 r-ridge@3.3 r-readr@2.1.5 r-ranger@0.17.0 r-r-utils@2.13.0 r-purrr@1.0.4 r-ggplot2@3.5.2 r-furrr@0.3.1 r-filelock@1.0.3 r-dplyr@1.1.4 r-distances@0.1.12 r-digest@0.6.37 r-deldir@2.0-4 r-caret@7.0-1 r-assertthat@0.2.1
Channel: guix-bioc
Location: guix-bioc/packages/m.scm (guix-bioc packages m)
Home page: https://saezlab.github.io/mistyR/
Licenses: GPL 3
Synopsis: Multiview Intercellular SpaTial modeling framework
Description:

mistyR is an implementation of the Multiview Intercellular SpaTialmodeling framework (MISTy). MISTy is an explainable machine learning framework for knowledge extraction and analysis of single-cell, highly multiplexed, spatially resolved data. MISTy facilitates an in-depth understanding of marker interactions by profiling the intra- and intercellular relationships. MISTy is a flexible framework able to process a custom number of views. Each of these views can describe a different spatial context, i.e., define a relationship among the observed expressions of the markers, such as intracellular regulation or paracrine regulation, but also, the views can also capture cell-type specific relationships, capture relations between functional footprints or focus on relations between different anatomical regions. Each MISTy view is considered as a potential source of variability in the measured marker expressions. Each MISTy view is then analyzed for its contribution to the total expression of each marker and is explained in terms of the interactions with other measurements that led to the observed contribution.

r-plelma 0.2.1
Propagated dependencies: r-mlogit@1.1-2 r-dfidx@0.1-0
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://cran.r-project.org/package=pleLMA
Licenses: GPL 3+
Synopsis: Pseudo-Likelihood Estimation of Log-Multiplicative Association Models
Description:

Log-multiplicative association models (LMA) are models for cross-classifications of categorical variables where interactions are represented by products of category scale values and an association parameter. Maximum likelihood estimation (MLE) fails for moderate to large numbers of categorical variables. The pleLMA package overcomes this limitation of MLE by using pseudo-likelihood estimation to fit the models to small or large cross-classifications dichotomous or multi-category variables. Originally proposed by Besag (1974, <doi:10.1111/j.2517-6161.1974.tb00999.x>), pseudo-likelihood estimation takes large complex models and breaks it down into smaller ones. Rather than maximizing the likelihood of the joint distribution of all the variables, a pseudo-likelihood function, which is the product likelihoods from conditional distributions, is maximized. LMA models can be derived from a number of different frameworks including (but not limited to) graphical models and uni-dimensional and multi-dimensional item response theory models. More details about the models and estimation can be found in the vignette.

r-bigreg 0.1.5
Propagated dependencies: r-uuid@1.2-1 r-rcpparmadillo@14.4.2-1 r-rcpp@1.0.14 r-mass@7.3-65
Channel: guix-cran
Location: guix-cran/packages/b.scm (guix-cran packages b)
Home page: https://cran.r-project.org/package=bigReg
Licenses: GPL 2+
Synopsis: Generalized Linear Models (GLM) for Large Data Sets
Description:

Allows the user to carry out GLM on very large data sets. Data can be created using the data_frame() function and appended to the object with object$append(data); data_frame and data_matrix objects are available that allow the user to store large data on disk. The data is stored as doubles in binary format and any character columns are transformed to factors and then stored as numeric (binary) data while a look-up table is stored in a separate .meta_data file in the same folder. The data is stored in blocks and GLM regression algorithm is modified and carries out a MapReduce- like algorithm to fit the model. The functions bglm(), and summary() and bglm_predict() are available for creating and post-processing of models. The library requires Armadillo installed on your system. It may not function on windows since multi-core processing is done using mclapply() which forks R on Unix/Linux type operating systems.

r-nimble 1.3.0
Propagated dependencies: r-r6@2.6.1 r-pracma@2.4.4 r-numderiv@2016.8-1.1 r-igraph@2.1.4 r-coda@0.19-4.1
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://r-nimble.org
Licenses: Modified BSD GPL 2+
Synopsis: MCMC, Particle Filtering, and Programmable Hierarchical Modeling
Description:

This package provides a system for writing hierarchical statistical models largely compatible with BUGS and JAGS', writing nimbleFunctions to operate models and do basic R-style math, and compiling both models and nimbleFunctions via custom-generated C++. NIMBLE includes default methods for MCMC, Laplace Approximation, Monte Carlo Expectation Maximization, and some other tools. The nimbleFunction system makes it easy to do things like implement new MCMC samplers from R, customize the assignment of samplers to different parts of a model from R, and compile the new samplers automatically via C++ alongside the samplers NIMBLE provides. NIMBLE extends the BUGS'/'JAGS language by making it extensible: New distributions and functions can be added, including as calls to external compiled code. Although most people think of MCMC as the main goal of the BUGS'/'JAGS language for writing models, one can use NIMBLE for writing arbitrary other kinds of model-generic algorithms as well. A full User Manual is available at <https://r-nimble.org>.

r-vcd2df 1.0.1
Channel: guix-cran
Location: guix-cran/packages/v.scm (guix-cran packages v)
Home page: https://github.com/vcd2df/r
Licenses: GPL 3
Synopsis: Value Change Dump to Data Frame
Description:

This package provides the vcd2df function, which loads a IEEE 1364-1995/2001 VCD (.vcd) file, specified as a parameter of type string containing exactly a file path, and returns an R dataframe containing values over time. A VCD file captures the register values at discrete timepoints from a simulated trace of execution of a hardware design in Verilog or VHDL. The returned dataframe contains a row for each register, by name, and a column for each time point, specified VCD-style using octothorpe-prefixed multiples of the timescale as strings. The only non-trivial implementation details are that (1) VCD x and z non-numerical values are encoded as negative value -1 (as otherwise all bit values are positive) and (2) registers with repeated names in distinct modules are ignored, rather than duplicated, as we anticipate these registers to have the same values. Read more in arXiv preprint: vcd2df -- Leveraging Data Science Insights for Hardware Security Research <doi:10.48550/arXiv.2505.06470>.

r-tronco 2.40.0
Propagated dependencies: r-xtable@1.8-4 r-scales@1.4.0 r-rgraphviz@2.52.0 r-rcolorbrewer@1.1-3 r-r-matlab@3.7.0 r-iterators@1.0.14 r-igraph@2.1.4 r-gtools@3.9.5 r-gtable@0.3.6 r-gridextra@2.3 r-foreach@1.5.2 r-doparallel@1.0.17 r-circlize@0.4.16 r-bnlearn@5.0.2
Channel: guix-bioc
Location: guix-bioc/packages/t.scm (guix-bioc packages t)
Home page: https://sites.google.com/site/troncopackage/
Licenses: GPL 3
Synopsis: TRONCO, an R package for TRanslational ONCOlogy
Description:

The TRONCO (TRanslational ONCOlogy) R package collects algorithms to infer progression models via the approach of Suppes-Bayes Causal Network, both from an ensemble of tumors (cross-sectional samples) and within an individual patient (multi-region or single-cell samples). The package provides parallel implementation of algorithms that process binary matrices where each row represents a tumor sample and each column a single-nucleotide or a structural variant driving the progression; a 0/1 value models the absence/presence of that alteration in the sample. The tool can import data from plain, MAF or GISTIC format files, and can fetch it from the cBioPortal for cancer genomics. Functions for data manipulation and visualization are provided, as well as functions to import/export such data to other bioinformatics tools for, e.g, clustering or detection of mutually exclusive alterations. Inferred models can be visualized and tested for their confidence via bootstrap and cross-validation. TRONCO is used for the implementation of the Pipeline for Cancer Inference (PICNIC).

r-mirsea 1.1.1
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MiRSEA
Licenses: GPL 2+
Synopsis: 'MicroRNA' Set Enrichment Analysis
Description:

The tools for MicroRNA Set Enrichment Analysis can identify risk pathways(or prior gene sets) regulated by microRNA set in the context of microRNA expression data. (1) This package constructs a correlation profile of microRNA and pathways by the hypergeometric statistic test. The gene sets of pathways derived from the three public databases (Kyoto Encyclopedia of Genes and Genomes ('KEGG'); Reactome'; Biocarta') and the target gene sets of microRNA are provided by four databases('TarBaseV6.0'; mir2Disease'; miRecords'; miRTarBase';). (2) This package can quantify the change of correlation between microRNA for each pathway(or prior gene set) based on a microRNA expression data with cases and controls. (3) This package uses the weighted Kolmogorov-Smirnov statistic to calculate an enrichment score (ES) of a microRNA set that co-regulate to a pathway , which reflects the degree to which a given pathway is associated with the specific phenotype. (4) This package can provide the visualization of the results.

r-seqhmm 2.0.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=seqHMM
Licenses: GPL 2+
Synopsis: Mixture Hidden Markov Models for Social Sequence Data and Other Multivariate, Multichannel Categorical Time Series
Description:

Designed for estimating variants of hidden (latent) Markov models (HMMs), mixture HMMs, and non-homogeneous HMMs (NHMMs) for social sequence data and other categorical time series. Special cases include feedback-augmented NHMMs, Markov models without latent layer, mixture Markov models, and latent class models. The package supports models for one or multiple subjects with one or multiple parallel sequences (channels). External covariates can be added to explain cluster membership in mixture models as well as initial, transition and emission probabilities in NHMMs. The package provides functions for evaluating and comparing models, as well as functions for visualizing of multichannel sequence data and HMMs. For NHMMs, methods for computing average causal effects and marginal state and emission probabilities are available. Models are estimated using maximum likelihood via the EM algorithm or direct numerical maximization with analytical gradients. Documentation is available via several vignettes, and Helske and Helske (2019, <doi:10.18637/jss.v088.i03>). For methodology behind the NHMMs, see Helske (2025, <doi:10.48550/arXiv.2503.16014>).

r-sgraph 1.1.0
Propagated dependencies: r-stringi@1.8.7 r-rcolorbrewer@1.1-3 r-magrittr@2.0.3 r-jsonlite@2.0.0 r-igraph@2.1.4 r-htmlwidgets@1.6.4 r-ggplot2@3.5.2 r-cowplot@1.1.3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://gitlab.com/thomaschln/sgraph
Licenses: GPL 3
Synopsis: Network Visualization Using 'sigma.js'
Description:

Interactive visualizations of graphs created with the igraph package using a htmlwidgets wrapper for the sigma.js network visualization v2.4.0 <https://www.sigmajs.org/>, enabling to display several thousands of nodes. While several R packages have been developed to interface sigma.js', all were developed for v1.x.x and none have migrated to v2.4.0 nor are they planning to. This package builds upon the sigmaNet package, and users familiar with it will recognize the similar design approach. Two extensions have been added to the classic sigma.js visualizations by overriding the underlying JavaScript code, enabling to draw a frame around node labels, and to display labels on multiple lines by parsing line breaks. Other additional functionalities that did not require overriding sigma.js code include toggling node visibility when clicked using a node attribute and highlighting specific edges. sigma.js is currently preparing a stable release v3.0.0, and this package plans to update to it when it is available.

r-select 1.4
Propagated dependencies: r-rsolnp@1.16 r-latticeextra@0.6-30 r-lattice@0.22-7 r-fd@1.0-12.3 r-ade4@1.7-23
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=Select
Licenses: GPL 2+
Synopsis: Determines Species Probabilities Based on Functional Traits
Description:

The objective of these functions is to derive a species assemblage that satisfies a functional trait profile. Restoring resilient ecosystems requires a flexible framework for selecting assemblages that are based on the functional traits of species. However, current trait-based models have been limited to algorithms that can only select species by optimising specific trait values, and could not elegantly accommodate the common desire among restoration ecologists to produce functionally diverse assemblages. We have solved this problem by applying a non-linear optimisation algorithm that optimises Rao Q, a closed-form functional trait diversity index that incorporates species abundances, subject to other linear constraints. This framework generalises previous models that only optimised the entropy of the community, and can optimise both functional diversity and entropy simultaneously. This package can also be used to generate experimental assemblages to test the effects of community-level traits on community dynamics and ecosystem function. The method is based on theory discussed in Laughlin (2014, Ecology Letters) <doi.org/10.1111/ele.12288>.

r-chnosz 2.1.0
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://www.chnosz.net/
Licenses: GPL 3
Synopsis: Thermodynamic Calculations and Diagrams for Geochemistry
Description:

An integrated set of tools for thermodynamic calculations in aqueous geochemistry and geobiochemistry. Functions are provided for writing balanced reactions to form species from user-selected basis species and for calculating the standard molal properties of species and reactions, including the standard Gibbs energy and equilibrium constant. Calculations of the non-equilibrium chemical affinity and equilibrium chemical activity of species can be portrayed on diagrams as a function of temperature, pressure, or activity of basis species; in two dimensions, this gives a maximum affinity or predominance diagram. The diagrams have formatted chemical formulas and axis labels, and water stability limits can be added to Eh-pH, oxygen fugacity- temperature, and other diagrams with a redox variable. The package has been developed to handle common calculations in aqueous geochemistry, such as solubility due to complexation of metal ions, mineral buffers of redox or pH, and changing the basis species across a diagram ("mosaic diagrams"). CHNOSZ also implements a group additivity algorithm for the standard thermodynamic properties of proteins.

r-glarma 1.7-1
Propagated dependencies: r-mass@7.3-65
Channel: guix-cran
Location: guix-cran/packages/g.scm (guix-cran packages g)
Home page: https://cran.r-project.org/package=glarma
Licenses: GPL 2+
Synopsis: Generalized Linear Autoregressive Moving Average Models
Description:

This package provides functions are provided for estimation, testing, diagnostic checking and forecasting of generalized linear autoregressive moving average (GLARMA) models for discrete valued time series with regression variables. These are a class of observation driven non-linear non-Gaussian state space models. The state vector consists of a linear regression component plus an observation driven component consisting of an autoregressive-moving average (ARMA) filter of past predictive residuals. Currently three distributions (Poisson, negative binomial and binomial) can be used for the response series. Three options (Pearson, score-type and unscaled) for the residuals in the observation driven component are available. Estimation is via maximum likelihood (conditional on initializing values for the ARMA process) optimized using Fisher scoring or Newton Raphson iterative methods. Likelihood ratio and Wald tests for the observation driven component allow testing for serial dependence in generalized linear model settings. Graphical diagnostics including model fits, autocorrelation functions and probability integral transform residuals are included in the package. Several standard data sets are included in the package.

r-karlen 0.0.2
Propagated dependencies: r-tibble@3.2.1
Channel: guix-cran
Location: guix-cran/packages/k.scm (guix-cran packages k)
Home page: https://rmagno.eu/karlen/
Licenses: FSDG-compatible
Synopsis: Real-Time PCR Data Sets by Karlen et al. (2007)
Description:

Real-time quantitative polymerase chain reaction (qPCR) data sets by Karlen et al. (2007) <doi:10.1186/1471-2105-8-131>. Provides one single tabular tidy data set in long format, encompassing 32 dilution series, for seven PCR targets and four biological samples. The targeted amplicons are within the murine genes: Cav1, Ccn2, Eln, Fn1, Rpl27, Hspg2, and Serpine1, respectively. Dilution series: scheme 1 (Cav1, Eln, Hspg2, Serpine1): 1-fold, 10-fold, 50-fold, and 100-fold; scheme 2 (Ccn2, Rpl27, Fn1): 1-fold, 10-fold, 50-fold, 100-fold and 1000-fold. For each concentration there are five replicates, except for the 1000-fold concentration, where only two replicates were performed. Each amplification curve is 40 cycles long. Original raw data file is Additional file 2 from "Statistical significance of quantitative PCR" by Y. Karlen, A. McNair, S. Perseguers, C. Mazza, and N. Mermod (2007) <https://static-content.springer.com/esm/art%3A10.1186%2F1471-2105-8-131/MediaObjects/12859_2006_1503_MOESM2_ESM.ZIP>.

r-lme4gs 0.1
Propagated dependencies: r-matrix@1.7-3 r-lme4@1.1-37
Channel: guix-cran
Location: guix-cran/packages/l.scm (guix-cran packages l)
Home page: https://cran.r-project.org/package=lme4GS
Licenses: GPL 2+
Synopsis: 'lme4' for Genomic Selection
Description:

Flexible functions that use lme4 as computational engine for fitting models used in Genomic Selection (GS). GS is a technology used for genetic improvement, and it has many advantages over phenotype-based selection. There are several statistical models that adequately approach the statistical challenges in GS, such as in linear mixed models (LMMs). The lme4 is the standard package for fitting linear and generalized LMMs in the R-package, but its use for genetic analysis is limited because it does not allow the correlation between individuals or groups of individuals to be defined. The lme4GS package is focused on fitting LMMs with covariance structures defined by the user, bandwidth selection, and genomic prediction. The new package is focused on genomic prediction of the models used in GS and can fit LMMs using different variance-covariance matrices. Several examples of GS models are presented using this package as well as the analysis using real data. For more details see Caamal-Pat et.al. (2021) <doi:10.3389/fgene.2021.680569>.

r-swdpwr 1.11
Propagated dependencies: r-spatstat-random@3.3-3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=swdpwr
Licenses: GPL 3
Synopsis: Power Calculation for Stepped Wedge Cluster Randomized Trials
Description:

To meet the needs of statistical power calculation for stepped wedge cluster randomized trials, we developed this software. Different parameters can be specified by users for different scenarios, including: cross-sectional and cohort designs, binary and continuous outcomes, marginal (GEE) and conditional models (mixed effects model), three link functions (identity, log, logit links), with and without time effects (the default specification assumes no-time-effect) under exchangeable, nested exchangeable and block exchangeable correlation structures. Unequal numbers of clusters per sequence are also allowed. The methods included in this package: Zhou et al. (2020) <doi:10.1093/biostatistics/kxy031>, Li et al. (2018) <doi:10.1111/biom.12918>. Supplementary documents can be found at: <https://ysph.yale.edu/cmips/research/software/study-design-power-calculation/swdpwr/>. The Shiny app for swdpwr can be accessed at: <https://jiachenchen322.shinyapps.io/swdpwr_shinyapp/>. The package also includes functions that perform calculations for the intra-cluster correlation coefficients based on the random effects variances as input variables for continuous and binary outcomes, respectively.

r-driver 0.4.1
Propagated dependencies: r-txdb-hsapiens-ucsc-hg38-knowngene@3.21.0 r-txdb-hsapiens-ucsc-hg19-knowngene@3.2.2 r-s4vectors@0.46.0 r-rlang@1.1.6 r-randomforest@4.7-1.2 r-org-hs-eg-db@3.21.0 r-genomicranges@1.60.0 r-genomicfeatures@1.60.0 r-genomeinfodb@1.44.0 r-caret@7.0-1
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://egeulgen.github.io/driveR/
Licenses: Expat
Synopsis: Prioritizing Cancer Driver Genes Using Genomics Data
Description:

Cancer genomes contain large numbers of somatic alterations but few genes drive tumor development. Identifying cancer driver genes is critical for precision oncology. Most of current approaches either identify driver genes based on mutational recurrence or using estimated scores predicting the functional consequences of mutations. driveR is a tool for personalized or batch analysis of genomic data for driver gene prioritization by combining genomic information and prior biological knowledge. As features, driveR uses coding impact metaprediction scores, non-coding impact scores, somatic copy number alteration scores, hotspot gene/double-hit gene condition, phenolyzer gene scores and memberships to cancer-related KEGG pathways. It uses these features to estimate cancer-type-specific probability for each gene of being a cancer driver using the related task of a multi-task learning classification model. The method is described in detail in Ulgen E, Sezerman OU. 2021. driveR: driveR: a novel method for prioritizing cancer driver genes using somatic genomics data. BMC Bioinformatics <doi:10.1186/s12859-021-04203-7>.

r-hemdag 2.7.4
Propagated dependencies: r-rbgl@1.84.0 r-preprocesscore@1.70.0 r-precrec@0.14.5 r-plyr@1.8.9 r-graph@1.86.0 r-foreach@1.5.2 r-doparallel@1.0.17
Channel: guix-cran
Location: guix-cran/packages/h.scm (guix-cran packages h)
Home page: https://cran.r-project.org/package=HEMDAG
Licenses: GPL 3+
Synopsis: Hierarchical Ensemble Methods for Directed Acyclic Graphs
Description:

An implementation of several Hierarchical Ensemble Methods (HEMs) for Directed Acyclic Graphs (DAGs). HEMDAG package: 1) reconciles flat predictions with the topology of the ontology; 2) can enhance the predictions of virtually any flat learning methods by taking into account the hierarchical relationships between ontology classes; 3) provides biologically meaningful predictions that always obey the true-path-rule, the biological and logical rule that governs the internal coherence of biomedical ontologies; 4) is specifically designed for exploiting the hierarchical relationships of DAG-structured taxonomies, such as the Human Phenotype Ontology (HPO) or the Gene Ontology (GO), but can be safely applied to tree-structured taxonomies as well (as FunCat), since trees are DAGs; 5) scales nicely both in terms of the complexity of the taxonomy and in the cardinality of the examples; 6) provides several utility functions to process and analyze graphs; 7) provides several performance metrics to evaluate HEMs algorithms. (Marco Notaro, Max Schubach, Peter N. Robinson and Giorgio Valentini (2017) <doi:10.1186/s12859-017-1854-y>).

r-ordcrm 1.0.0
Propagated dependencies: r-rms@8.0-0
Channel: guix-cran
Location: guix-cran/packages/o.scm (guix-cran packages o)
Home page: https://cran.r-project.org/package=ordcrm
Licenses: GPL 2+
Synopsis: Likelihood-Based Continual Reassessment Method (CRM) Dose Finding Designs
Description:

This package provides the setup and calculations needed to run a likelihood-based continual reassessment method (CRM) dose finding trial and performs simulations to assess design performance under various scenarios. 3 dose finding designs are included in this package: ordinal proportional odds model (POM) CRM, ordinal continuation ratio (CR) model CRM, and the binary 2-parameter logistic model CRM. These functions allow customization of design characteristics to vary sample size, cohort sizes, target dose-limiting toxicity (DLT) rates, discrete or continuous dose levels, combining ordinal grades 0 and 1 into one category, and incorporate safety and/or stopping rules. For POM and CR model designs, ordinal toxicity grades are specified by common terminology criteria for adverse events (CTCAE) version 4.0. Function pseudodata creates the necessary starting models for these 3 designs, and function nextdose estimates the next dose to test in a cohort of patients for a target DLT rate. We also provide the function crmsimulations to assess the performance of these 3 dose finding designs under various scenarios.

r-apollo 0.3.5
Propagated dependencies: r-tibble@3.2.1 r-stringr@1.5.1 r-rstudioapi@0.17.1 r-rsolnp@1.16 r-rsghb@1.2.2 r-rcppeigen@0.3.4.0.2 r-rcpparmadillo@14.4.2-1 r-rcpp@1.0.14 r-randtoolbox@2.0.5 r-numderiv@2016.8-1.1 r-mvtnorm@1.3-3 r-mnormt@2.1.1 r-maxlik@1.5-2.1 r-matrixstats@1.5.0 r-deriv@4.1.6 r-coda@0.19-4.1 r-cli@3.6.5 r-bgw@0.1.3
Channel: guix-cran
Location: guix-cran/packages/a.scm (guix-cran packages a)
Home page: http://www.apolloChoiceModelling.com
Licenses: GPL 2
Synopsis: Tools for Choice Model Estimation and Application
Description:

Choice models are a widely used technique across numerous scientific disciplines. The Apollo package is a very flexible tool for the estimation and application of choice models in R. Users are able to write their own model functions or use a mix of already available ones. Random heterogeneity, both continuous and discrete and at the level of individuals and choices, can be incorporated for all models. There is support for both standalone models and hybrid model structures. Both classical and Bayesian estimation is available, and multiple discrete continuous models are covered in addition to discrete choice. Multi-threading processing is supported for estimation and a large number of pre and post-estimation routines, including for computing posterior (individual-level) distributions are available. For examples, a manual, and a support forum, visit <http://www.ApolloChoiceModelling.com>. For more information on choice models see Train, K. (2009) <isbn:978-0-521-74738-7> and Hess, S. & Daly, A.J. (2014) <isbn:978-1-781-00314-5> for an overview of the field.

r-mtrank 0.2-0
Propagated dependencies: r-plackettluce@0.4.3 r-netmeta@3.2-0 r-meta@8.1-0 r-magrittr@2.0.3 r-ggplot2@3.5.2 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/TEvrenoglou/mtrank
Licenses: GPL 2+
Synopsis: Ranking using Probabilistic Models and Treatment Choice Criteria
Description:

Estimation of treatment hierarchies in network meta-analysis using a novel frequentist approach based on treatment choice criteria (TCC) and probabilistic ranking models, as described by Evrenoglou et al. (2024) <DOI:10.48550/arXiv.2406.10612>. The TCC are defined using a rule based on the smallest worthwhile difference (SWD). Using the defined TCC, the NMA estimates (i.e., treatment effects and standard errors) are first transformed into treatment preferences, indicating either a treatment preference (e.g., treatment A > treatment B) or a tie (treatment A = treatment B). These treatment preferences are then synthesized using a probabilistic ranking model, which estimates the latent ability parameter of each treatment and produces the final treatment hierarchy. This parameter represents each treatments ability to outperform all the other competing treatments in the network. Here the terms ability to outperform indicates the propensity of each treatment to yield clinically important and beneficial effects when compared to all the other treatments in the network. Consequently, larger ability estimates indicate higher positions in the ranking list.

Page: 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528
Total results: 36659