Download imagery tiles to a standard cache and load the data into raster objects. Facilities for AWS terrain <https://registry.opendata.aws/terrain-tiles/> terrain and Mapbox <https://www.mapbox.com/> servers are provided.
Data stored in text file can be processed chunkwise using dplyr commands. These are recorded and executed per data chunk, so large files can be processed with limited memory using the LaF package.
Filtering, also known as gating, of flow cytometry samples using the curvHDR method, which is described in Naumann, U., Luta, G. and Wand, M.P. (2010) <DOI:10.1186/1471-2105-11-44>.
This package provides a modeling tool allowing gene selection, reverse engineering, and prediction in cascade networks. Jung, N., Bertrand, F., Bahram, S., Vallat, L., and Maumy-Bertrand, M. (2014) <doi:10.1093/bioinformatics/btt705>.
This package implements the copula-based sensitivity analysis method, as discussed in Copula-based Sensitivity Analysis for Multi-Treatment Causal Inference with Unobserved Confounding <arXiv:2102.09412>, with Gaussian copula adopted in particular.
The Dirichlet Laplace shrinkage prior in Bayesian linear regression and variable selection, featuring: utility functions in implementing Dirichlet-Laplace priors such as visualization; scalability in Bayesian linear regression; penalized credible regions for variable selection.
Application of Ensemble Empirical Mode Decomposition and its variant based Support Vector regression model for univariate time series forecasting. For method details see Das (2020).<http://krishi.icar.gov.in/jspui/handle/123456789/44138>.
This package provides functions and example datasets for Fechnerian scaling of discrete object sets. User can compute Fechnerian distances among objects representing subjective dissimilarities, and other related information. See package?fechner for an overview.
Multi-environment genomic prediction for training and test environments using penalized factorial regression. Predictions are made using genotype-specific environmental sensitivities as in Millet et al. (2019) <doi:10.1038/s41588-019-0414-y>.
This package provides an R interface to the GeoNetwork API (<https://geonetwork-opensource.org/#api>) allowing to upload and publish metadata in a GeoNetwork web-application and expose it to OGC CSW.
Computes the ACMIF test and Bonferroni-adjusted p-value of interaction in two-factor studies. Produces corresponding interaction plot and analysis of variance tables and p-values from several other tests of non-additivity.
This package performs linear discriminant analysis in high dimensional problems based on reliable covariance estimators for problems with (many) more variables than observations. Includes routines for classifier training, prediction, cross-validation and variable selection.
Assists in generating categorical clustered outcome data, estimating the Intracluster Correlation Coefficient (ICC) for nominal or ordinal data with 2+ categories under the resampling and method of moments (MoM) methods, with confidence intervals.
This package implements a Shiny Item Analysis module and functions for computing false positive rate and other binary classification metrics from inter-rater reliability based on Bartoš & Martinková (2024) <doi:10.1111/bmsp.12343>.
Common coordinate-based workflows involving processed chromatin loop and genomic element data are considered and packaged into appropriate customizable functions. Includes methods for linking element sets via chromatin loops and creating consensus loop datasets.
Library of functions for the statistical analysis and simulation of Locally Stationary Wavelet Packet (LSWP) processes. The methods implemented by this library are described in Cardinali and Nason (2017) <doi:10.1111/jtsa.12230>.
Lipid annotation in untargeted LC-MS lipidomics based on fragmentation rules. Alcoriza-Balaguer MI, Garcia-Canaveras JC, Lopez A, Conde I, Juan O, Carretero J, Lahoz A (2019) <doi:10.1021/acs.analchem.8b03409>.
Time-dependent Receiver Operating Characteristic curves, Area Under the Curve, and Net Reclassification Indexes for repeated measures. It is based on methods in Barbati and Farcomeni (2017) <doi:10.1007/s10260-017-0410-2>.
Wrapper for minepy implementation of Maximal Information-based Nonparametric Exploration statistics (MIC and MINE family). Detailed information of the ANSI C implementation of minepy can be found at <http://minepy.readthedocs.io/en/latest>.
Application of a test to rule out that trends detected in hydrological time series are explained exclusively by the randomness of the climate. Based on: Ricchetti, (2018) <https://repositorio.uchile.cl/handle/2250/168487>.
This package provides a set of functions providing the implementation of the network meta-analysis model with dose-response relationships, predicted values of the fitted model and dose-response plots in a frequentist way.
Identifies single nucleotide variants in next-generation sequencing data by estimating their local false discovery rates. For more details, see Karimnezhad, A. and Perkins, T. J. (2024) <doi:10.1038/s41598-024-51958-z>.
Basic statistical analyses. The package has been developed to be used in statistics courses at Bocconi University (Milan, Italy). Currently, the package includes some exploratory and inferential analyses usually presented in introductory statistics courses.
This package provides methods for differential abundance analysis in high-dimensional cytometry data when a covariate is subject to right censoring (e.g. survival time) based on multiple imputation and generalized linear mixed models.