This package provides a generalized estimating equations solver for parameters in mean, scale, and correlation structures, through mean link, scale link, and correlation link. It can also handle clustered categorical responses.
This package provides some helpful extensions and modifications to the ggplot2 package to combine multiple ggplot2 plots into one and label them with letters, as is often required for scientific publications.
This package provides functions for regulation, decomposition and analysis of space-time series. The pastecs
library is a PNEC-Art4 and IFREMER initiative to bring PASSTEC 2000 functionalities to R.
This package provides a date-time library with high-level primitives that are designed to be difficult to misuse and have reasonable performance. It's heavily inspired by the Temporal project.
Haplotype simulations of rare variant genetic data that emulates real data can be performed with RAREsim. RAREsim uses the expected number of variants in MAC bins - either as provided by default parameters or estimated from target data - and an abundance of rare variants as simulated HAPGEN2 to probabilistically prune variants. RAREsim produces haplotypes that emulate real sequencing data with respect to the total number of variants, allele frequency spectrum, haplotype structure, and variant annotation.
Robust multivariate methods for high dimensional data including outlier detection (Filzmoser and Todorov (2013) <doi:10.1016/j.ins.2012.10.017>), robust sparse PCA (Croux et al. (2013) <doi:10.1080/00401706.2012.727746>, Todorov and Filzmoser (2013) <doi:10.1007/978-3-642-33042-1_31>), robust PLS (Todorov and Filzmoser (2014) <doi:10.17713/ajs.v43i4.44>), and robust sparse classification (Ortner et al. (2020) <doi:10.1007/s10618-019-00666-8>).
Fits measurement error models using Monte Carlo Expectation Maximization (MCEM). For specific details on the methodology, see: Greg C. G. Wei & Martin A. Tanner (1990) A Monte Carlo Implementation of the EM Algorithm and the Poor Man's Data Augmentation Algorithms, Journal of the American Statistical Association, 85:411, 699-704 <doi:10.1080/01621459.1990.10474930> For more examples on measurement error modelling using MCEM, see the RMarkdown vignette: "'refitME
R-package tutorial".
Microarray Classification is designed for both biologists and statisticians. It offers the ability to train a classifier on a labelled microarray dataset and to then use that classifier to predict the class of new observations. A range of modern classifiers are available, including support vector machines (SVMs), nearest shrunken centroids (NSCs)... Advanced methods are provided to estimate the predictive error rate and to report the subset of genes which appear essential in discriminating between classes.
Used for Bayesian mediation analysis based on Bayesian additive Regression Trees (BART). The analysis method is described in Yu and Li (2025) "Mediation Analysis with Bayesian Additive Regression Trees", submitted for publication.
This package provides functions for training extreme gradient boosting model using propensity score A-learning and weight-learning methods. For further details, see Liu et al. (2024) <doi:10.1093/bioinformatics/btae592>.
This package provides functions to reconstruct, generate, and simulate synchronous, asynchronous, probabilistic, and temporal Boolean networks. Provides also functions to analyze and visualize attractors in Boolean networks <doi:10.1093/bioinformatics/btq124>.
Can be useful for finding associations among different positions in a position-wise aligned sequence dataset. The approach adopted for finding associations among positions is based on the latent multivariate normal distribution.
An interactive document on the topic of classification tree analysis using rmarkdown and shiny packages. Runtime examples are provided in the package function as well as at <https://kartikeyab.shinyapps.io/CTShiny/>.
Utility functions for the statistical analysis of corpus frequency data. This package is a companion to the open-source course "Statistical Inference: A Gentle Introduction for Computational Linguists and Similar Creatures" ('SIGIL').
Package to analyze the clinical utility of a biomarker. It provides the clinical utility curve, clinical utility table, efficacy of a biomarker, clinical efficacy curve and tests to compare efficacy between markers.
Build donut/pie charts with ggplot2 layer by layer, exploiting the advantages of polar symmetry. Leverage layouts to distribute labels effectively. Connect labels to donut segments using pins. Streamline annotation and highlighting.
This package contains one main function deduped()
which speeds up slow, vectorized functions by only performing computations on the unique values of the input and expanding the results at the end.
Work within the dplyr workflow to add random variates to your data frame. Variates can be added at any level of an existing column. Also, bounds can be specified for simulated variates.
This SVG elements generator can easily generate SVG elements such as rect, line, circle, ellipse, polygon, polyline, text and group. Also, it can combine and output SVG elements into a SVG file.
Predicts cytoplasmic effector proteins using genomic data by searching for motifs of interest using regular expression searches and hidden Markov models (HMM) based in Haas et al. (2009) <doi:10.1038/nature08358>.
This cointegration based Time Delay Neural Network Model hybrid model allows the researcher to make use of the information extracted by the cointegrating vector as an input in the neural network model.
This package contains a collection of examples of evidence factors in observational studies from the book Replication and Evidence Factors in Observational Studies by Paul R. Rosenbaum (2021) <doi:10.1201/9781003039648>.
Finds the critical sample size ("critical point of stability") for a correlation to stabilize in Schoenbrodt and Perugini's definition of sequential stability (see <doi:10.1016/j.jrp.2013.05.009>).
Obtain Formula 1 data via the Jolpica API <https://jolpi.ca> and the unofficial API <https://www.formula1.com/en/timing/f1-live> via the fastf1 Python library <https://docs.fastf1.dev/>.