Outlier detection using leave-one-out kernel density estimates and extreme value theory. The bandwidth for kernel density estimates is computed using persistent homology, a technique in topological data analysis. Using peak-over-threshold method, a generalized Pareto distribution is fitted to the log of leave-one-out kde values to identify outliers.
Linear splines with convenient parametrisations such that (1) coefficients are slopes of consecutive segments or (2) coefficients are slope changes at consecutive knots. Knots can be set manually or at break points of equal-frequency or equal-width intervals covering the range of x'. The implementation follows Greene (2003), chapter 7.2.5.
This package performs key functions for MCMC analysis using minimal code - visualizes, manipulates, and summarizes MCMC output. Functions support simple and straightforward subsetting of model parameters within the calls, and produce presentable and publication-ready output. MCMC output may be derived from Bayesian model output fit with Stan', NIMBLE', JAGS', and other software.
BEAST2 (<https://www.beast2.org>) is a widely used Bayesian phylogenetic tool, that uses DNA/RNA/protein data and many model priors to create a posterior of jointly estimated phylogenies and parameters. mcbette allows to do a Bayesian model comparison over some site and clock models, using babette (<https://github.com/ropensci/babette/>).
Create PostgreSQL
statements/scripts from R, optionally executing the SQL statements. Common SQL operations are included, although not every configurable option is available at this time. SQL output is intended to be compliant with PostgreSQL
syntax specifications. PostgreSQL
documentation is available here <https://www.postgresql.org/docs/current/index.html>.
Download economic and financial time series from public sources, including the St Louis Fed's FRED system, Yahoo Finance, the US Bureau of Labor Statistics, the US Energy Information Administration, the World Bank, Eurostat, the European Central Bank, the Bank of England, the UK's Office of National Statistics, Deutsche Bundesbank, and INSEE.
It fits scale mixture of skew-normal linear mixed models using either an expectationâ maximization (EM) type algorithm or its accelerated version (Damped Anderson Acceleration with Epsilon Monotonicity, DAAREM), including some possibilities for modeling the within-subject dependence. Details can be found in Schumacher, Lachos and Matos (2021) <doi:10.1002/sim.8870>.
Get started with new projects by dropping a skeleton of a new project into a new or existing directory, initialise git repositories, and create reproducible environments with the renv package. The package allows for dynamically named files, folders, file content, as well as the functionality to drop individual template files into existing projects.
Forms likelihood-based confidence intervals (LBCIs) for parameters in structural equation modeling, introduced in Cheung and Pesigan (2023) <doi:10.1080/10705511.2023.2183860>. Currently implements the algorithm illustrated by Pek and Wu (2018) <doi:10.1037/met0000163>, and supports the robust LBCI proposed by Falk (2018) <doi:10.1080/10705511.2017.1367254>.
Adds support for R startup configuration via .Renviron.d and .Rprofile.d directories in addition to .Renviron and .Rprofile files. This makes it possible to keep private / secret environment variables separate from other environment variables. It also makes it easier to share specific startup settings by simply copying a file to a directory.
This package provides a constrained two-dimensional Delaunay triangulation package providing both triangulation and generation of voronoi mosaics of irregular spaced data. Please note that most of the functions are now also covered in package interp, which is a re-implementation from scratch under a free license based on a different triangulation algorithm.
This package performs transformation discrimination analysis and non-transformation discrimination analysis. It also includes functions for Linear Discriminant Analysis, Quadratic Discriminant Analysis, and Mixture Discriminant Analysis. In the context of mixture discriminant analysis, it offers options for both common covariance matrix (common sigma) and individual covariance matrices (uncommon sigma) for the mixture components.
The outcome of various rehabilitation strategies for water distribution systems can be modeled with the Water Management Simulator (WaMaSim
). Pipe breaks and the corresponding damage and rehabilitation costs are simulated. It is mainly intended to be used as educational tool for the Water Infrastructure Experimental and Computer Laboratory at ETH Zurich, Switzerland.
The main function in the h5mread package is h5mread()
, which allows reading arbitrary data from an HDF5 dataset into R, similarly to what the h5read()
function from the rhdf5 package does. In the case of h5mread()
, the implementation has been optimized to make it as fast and memory-efficient as possible.
The package provides two frameworks. One for the differential transcript usage analysis between different conditions and one for the tuQTL analysis. Both are based on modeling the counts of genomic features (i.e., transcripts) with the Dirichlet-multinomial distribution. The package also makes available functions for visualization and exploration of the data and results.
Fit linear and generalized linear mixed models with various extensions, including zero-inflation. The models are fitted using maximum likelihood estimation via the Template Model Builder. Random effects are assumed to be Gaussian on the scale of the linear predictor and are integrated out using the Laplace approximation. Gradients are calculated using automatic differentiation.
Indirect method for the estimation of reference intervals using Real-World Data ('RWD'). It takes routine measurements of diagnostic tests, containing pathological and non-pathological samples as input and uses sophisticated statistical methods to derive a model describing the distribution of the non-pathological samples. This distribution can then be used to derive reference intervals. Furthermore, the package offers functions for printing and plotting the results of the algorithm. See ?refineR
for a more comprehensive description of the features. Version 1.0 of the algorithm is described in detail in Ammer et al. (2021) <doi:10.1038/s41598-021-95301-2>. Additional guidance on the usage of the algorithm is given in Ammer et al. (2023) <doi:10.1093/jalm/jfac101>.
This package provides functions to accompany the book "Applied Statistical Modeling for Ecologists" by Marc Kéry and Kenneth F. Kellner (2024, ISBN: 9780443137150). Included are functions for simulating and customizing the datasets used for the example models in each chapter, summarizing output from model fitting engines, and running custom Markov Chain Monte Carlo.
Perceptually uniform palettes for commonly used variables in oceanography as functions taking an integer and producing character vectors of colours. See Thyng, K.M., Greene, C.A., Hetland, R.D., Zimmerle, H.M. and S.F. DiMarco
(2016) <doi:10.5670/oceanog.2016.66> for the guidelines adhered to when creating the palettes.
Using the idea of least trimmed square, it could automatically detects and removes outliers from data before estimating the coefficients. It is a robust machine learning tool which can be applied to gene-expression deconvolution technique. Yuning Hao, Ming Yan, Blake R. Heath, Yu L. Lei and Yuying Xie (2019) <doi:10.1101/358366>.
We implement a cocktail algorithm, a good mixture of coordinate decent, the majorization-minimization principle and the strong rule, for computing the solution paths of the elastic net penalized Cox's proportional hazards model. The package is an implementation of Yang, Y. and Zou, H. (2013) <doi:10.4310/SII.2013.v6.n2.a1>.
Compute energy fluxes in trophic networks, from resources to their consumers, and can be applied to systems ranging from simple two-species interactions to highly complex food webs. It implements the approach described in Gauzens et al. (2017) <doi:10.1101/229450> to calculate energy fluxes, which are also used to calculate equilibrium stability.
Defines classes and methods that can be used to implement genetic algorithms for feature selection. The idea is that we want to select a fixed number of features to combine into a linear classifier that can predict a binary outcome, and can use a genetic algorithm heuristically to select an optimal set of features.
This package contains many functions useful for monitoring and reporting the results of clinical trials and other experiments in which treatments are compared. LaTeX
is used to typeset the resulting reports, recommended to be in the context of knitr'. The Hmisc', ggplot2', and lattice packages are used by greport for high-level graphics.