This package provides the asynchronous RPC client-server framework and message specification for Rigetti Quantum Cloud Services (QCS). It implements an efficient transport protocol by using ZeroMQ (ZMQ) sockets and MessagePack (msgpack) serialization.
S3 and S4 functions are implemented for spatial multi-site stochastic generation of daily time series of temperature and precipitation. These tools make use of Vector AutoRegressive
models (VARs). The weather generator model is then saved as an object and is calibrated by daily instrumental "Gaussianized" time series through the vars package tools. Once obtained this model, it can it can be used for weather generations and be adapted to work with several climatic monthly time series.
An implementation of robust boosting algorithms for regression in R. This includes the RRBoost method proposed in the paper "Robust Boosting for Regression Problems" (Ju X and Salibian-Barrera M. 2020) <doi:10.1016/j.csda.2020.107065>. It also implements previously proposed boosting algorithms in the simulation section of the paper: L2Boost, LADBoost, MBoost (Friedman, J. H. (2001) <doi:10.1214/aos/1013203451>) and Robloss (Lutz et al. (2008) <doi:10.1016/j.csda.2007.11.006>).
This package provides a tool that allows to download and save historical time series data for future use offline. The intelligent updating functionality will only download the new available information; thus, saving you time and Internet bandwidth. It will only re-download the full data-set if any inconsistencies are detected. This package supports following data provides: Yahoo (finance.yahoo.com), FRED (fred.stlouisfed.org), Quandl (data.nasdaq.com), AlphaVantage
(www.alphavantage.co), Tiingo (www.tiingo.com).
This package provides a modeling tool allowing gene selection, reverse engineering, and prediction in cascade networks. Jung, N., Bertrand, F., Bahram, S., Vallat, L., and Maumy-Bertrand, M. (2014) <doi:10.1093/bioinformatics/btt705>.
Data stored in text file can be processed chunkwise using dplyr commands. These are recorded and executed per data chunk, so large files can be processed with limited memory using the LaF
package.
This package implements the copula-based sensitivity analysis method, as discussed in Copula-based Sensitivity Analysis for Multi-Treatment Causal Inference with Unobserved Confounding <arXiv:2102.09412>
, with Gaussian copula adopted in particular.
Download imagery tiles to a standard cache and load the data into raster objects. Facilities for AWS terrain <https://registry.opendata.aws/terrain-tiles/> terrain and Mapbox <https://www.mapbox.com/> servers are provided.
Filtering, also known as gating, of flow cytometry samples using the curvHDR
method, which is described in Naumann, U., Luta, G. and Wand, M.P. (2010) <DOI:10.1186/1471-2105-11-44>.
The Dirichlet Laplace shrinkage prior in Bayesian linear regression and variable selection, featuring: utility functions in implementing Dirichlet-Laplace priors such as visualization; scalability in Bayesian linear regression; penalized credible regions for variable selection.
Application of Ensemble Empirical Mode Decomposition and its variant based Support Vector regression model for univariate time series forecasting. For method details see Das (2020).<http://krishi.icar.gov.in/jspui/handle/123456789/44138>.
This package provides functions and example datasets for Fechnerian scaling of discrete object sets. User can compute Fechnerian distances among objects representing subjective dissimilarities, and other related information. See package?fechner for an overview.
Multi-environment genomic prediction for training and test environments using penalized factorial regression. Predictions are made using genotype-specific environmental sensitivities as in Millet et al. (2019) <doi:10.1038/s41588-019-0414-y>.
This package provides an R interface to the GeoNetwork
API (<https://geonetwork-opensource.org/#api>) allowing to upload and publish metadata in a GeoNetwork
web-application and expose it to OGC CSW.
Computes the ACMIF test and Bonferroni-adjusted p-value of interaction in two-factor studies. Produces corresponding interaction plot and analysis of variance tables and p-values from several other tests of non-additivity.
This package performs linear discriminant analysis in high dimensional problems based on reliable covariance estimators for problems with (many) more variables than observations. Includes routines for classifier training, prediction, cross-validation and variable selection.
This package implements a Shiny Item Analysis module and functions for computing false positive rate and other binary classification metrics from inter-rater reliability based on Bartoš & Martinková (2024) <doi:10.1111/bmsp.12343>.
Assists in generating categorical clustered outcome data, estimating the Intracluster Correlation Coefficient (ICC) for nominal or ordinal data with 2+ categories under the resampling and method of moments (MoM
) methods, with confidence intervals.
Lipid annotation in untargeted LC-MS lipidomics based on fragmentation rules. Alcoriza-Balaguer MI, Garcia-Canaveras JC, Lopez A, Conde I, Juan O, Carretero J, Lahoz A (2019) <doi:10.1021/acs.analchem.8b03409>.
Common coordinate-based workflows involving processed chromatin loop and genomic element data are considered and packaged into appropriate customizable functions. Includes methods for linking element sets via chromatin loops and creating consensus loop datasets.
Time-dependent Receiver Operating Characteristic curves, Area Under the Curve, and Net Reclassification Indexes for repeated measures. It is based on methods in Barbati and Farcomeni (2017) <doi:10.1007/s10260-017-0410-2>.
Library of functions for the statistical analysis and simulation of Locally Stationary Wavelet Packet (LSWP) processes. The methods implemented by this library are described in Cardinali and Nason (2017) <doi:10.1111/jtsa.12230>.
Wrapper for minepy implementation of Maximal Information-based Nonparametric Exploration statistics (MIC and MINE family). Detailed information of the ANSI C implementation of minepy can be found at <http://minepy.readthedocs.io/en/latest>.
Application of a test to rule out that trends detected in hydrological time series are explained exclusively by the randomness of the climate. Based on: Ricchetti, (2018) <https://repositorio.uchile.cl/handle/2250/168487>.