Functionality to read, recode, and transcode data as used in quantitative language comparison, specifically to deal with multilingual orthographic variation (Moran & Cysouw (2018) <doi:10.5281/zenodo.1296780>) and with the recoding of nominal data.
Allow to identify motifs in spatial-time series. A motif is a previously unknown subsequence of a (spatial) time series with relevant number of occurrences. For this purpose, the Combined Series Approach (CSA) is used.
Given a coro asynchronous generator instance that produces text, write that text into a document selection in RStudio and Positron'. This is particularly helpful for streaming large language model responses into the user's editor.
Simple utilities to design and generate density functions on bounded regions in space and space-time, and simulate independent, identically distributed data therefrom. See Davies & Lawson (2019) <doi:10.1080/00949655.2019.1575066> for example.
This package contains space filling based tools for machine learning and data mining. Some functions offer several computational techniques and deal with the out of memory for large big data by using the ff package.
This package provides functions for fitting MOSAiCS
and MOSAiCS-HMM
, a statistical framework to analyze one-sample or two-sample ChIP-seq
data of transcription factor binding and histone modification.
This package provides methods for visualizing large multivariate datasets using static and interactive scatterplot matrices, parallel coordinate plots, volcano plots, and litre plots. It includes examples for visualizing RNA-sequencing datasets and differentially expressed genes.
Lp_solve is software for solving linear, integer and mixed integer programs. This implementation supplies a "wrapper" function in C and some R functions that solve general linear/integer problems, assignment problems, and transportation problems.
This package provides functions to produce rudimentary ASCII graphics directly in the terminal window. This package provides a basic plotting function (and equivalents of curve, density, acf and barplot) as well as a boxplot function.
Statistical and biological validation of clustering results. This package implements Dunn Index, Silhouette, Connectivity, Stability, BHI and BSI. Further information can be found in Brock, G et al. (2008) <doi: 10.18637/jss.v025.i04>.
RQ (Redis Queue) is a simple Python library for queueing jobs and processing them in the background with workers. It is backed by Redis and it is designed to have a low barrier to entry.
WWTD is a Travis Simulator that lets you run test matrices defined in .travis.yml
on your local machine, using rvm
, rbenv
, or chruby
to test different versions of Ruby.
Retime speech signals with a native Waveform Similarity Overlap-Add (WSOLA) implementation translated from the TSM toolbox by Driedger & Müller (2014) <https://www.audiolabs-erlangen.de/content/resources/MIR/TSMtoolbox/2014_DriedgerMueller_TSM-Toolbox_DAFX.pdf>
. Design retimings and pitch (f0) transformations with tidy data and apply them via Praat interface. Produce spectrograms, spectra, and amplitude envelopes. Includes implementation of vocalic speech envelope analysis (fft_spectrum) technique and example data (mm1) from Tilsen, S., & Johnson, K. (2008) <doi:10.1121/1.2947626>.
Ridge regression due to Hoerl and Kennard (1970)<DOI:10.1080/00401706.1970.10488634> and generalized ridge regression due to Yang and Emura (2017)<DOI:10.1080/03610918.2016.1193195> with optimized tuning parameters. These ridge regression estimators (the HK estimator and the YE estimator) are computed by minimizing the cross-validated mean squared errors. Both the ridge and generalized ridge estimators are applicable for high-dimensional regressors (p>n), where p is the number of regressors, and n is the sample size.
Non-linear transformations of data to better discover latent effects. Applies a sequence of three transformations (1) a Gaussianizing transformation, (2) a Z-score transformation, and (3) an outlier removal transformation. A publication describing the method has the following citation: Gregory J. Hunt, Mark A. Dane, James E. Korkola, Laura M. Heiser & Johann A. Gagnon-Bartsch (2020) "Automatic Transformation and Integration to Improve Visualization and Discovery of Latent Effects in Imaging Data", Journal of Computational and Graphical Statistics, <doi:10.1080/10618600.2020.1741379>.
This package performs all steps in the credit scoring process. This package allows the user to follow all the necessary steps for building an effective scorecard. It provides the user functions for coarse binning of variables, Weights of Evidence (WOE) transformation, variable clustering, custom binning, visualization, and scaling of logistic regression coefficients. The results will generate a scorecard that can be used as an effective credit scoring tool to evaluate risk. For complete details on the credit scoring process, see Siddiqi (2005, ISBN:047175451X).
The regression discontinuity (RD) design is a popular quasi-experimental design for causal inference and policy evaluation. The rdpower package provides tools to perform power, sample size and MDE calculations in RD designs: rdpower()
calculates the power of an RD design, rdsampsi()
calculates the required sample size to achieve a desired power and rdmde()
calculates minimum detectable effects. See Cattaneo, Titiunik and Vazquez-Bare (2019) <https://rdpackages.github.io/references/Cattaneo-Titiunik-VazquezBare_2019_Stata.pdf>
for further methodological details.
An isotope natural abundance correction algorithm that is needed especially for high resolution mass spectrometers. Supports correction for 13C, 2H and 15N. Su X, Lu W and Rabinowitz J (2017) <doi:10.1021/acs.analchem.7b00396>.
Helps create alerts and determine trends by using various methods to analyze public health surveillance data. The primary analysis method is based upon a published analytics strategy by Benedetti (2019) <doi:10.5588/pha.19.0002>.
Series of partially balanced incomplete block designs (PBIB) based on the combinatory method (S) introduced in (Imane Rezgui et al, 2014) <doi:10.3844/jmssp.2014.45.48>; and it gives their associated U-type design.
Estimate population kin counts and its distribution by type, age and sex. The package implements one-sex and two-sex framework for studying living-death availability, with time varying rates or not, and multi-stage model.
Track and document dplyr data pipelines. As you filter, mutate, and join your way through a data set, dtrackr seamlessly keeps track of your data flow and makes publication ready documentation of a data pipeline simple.
This package implements the conditional estimation procedure of Lee, Sun, Sun and Taylor (2016) <doi:10.1214/15-AOS1371>. This procedure allows hypothesis testing on the mean of a normal random vector subject to linear constraints.
This package provides a collection of functions designed to retrieve, filter and spatialize data from the Flora e Funga do Brasil dataset. For more information about the dataset, please visit <https://floradobrasil.jbrj.gov.br/consulta/>.