Utilities to cost and evaluate Australian tax policy, including fast projections of personal income tax collections, high-performance tax and transfer calculators, and an interface to common indices from the Australian Bureau of Statistics. Written to support Grattan Institute's Australian Perspectives program, and related projects. Access to the Australian Taxation Office's sample files of personal income tax returns is assumed.
Fit linear mixed-effects models using restricted (or residual) maximum likelihood (REML) and with generalized inverse matrices to specify covariance structures for random effects. In particular, the package is suited to fit quantitative genetic mixed models, often referred to as animal models'. Implements the average information algorithm as the main tool to maximize the restricted log-likelihood, but with other algorithms available.
Interactive dendrogram that enables the user to select and color clusters, to zoom and pan the dendrogram, and to visualize the clustered data not only in a built-in heat map, but also in GGobi interactive plots and user-supplied plots. This is a backport of Qt-based idendro (<https://github.com/tsieger/idendro>) to base R graphics and Tcl/Tk GUI.
Some basic functions to implement belief functions including: transformation between belief functions using the method introduced by Philippe Smets <arXiv:1304.1122>, evidence combination, evidence discounting, decision-making, and constructing masses. Currently, thirteen combination rules and six decision rules are supported. It can also be used to generate different types of random masses when working on belief combination and conflict management.
This package performs maximum a posteriori Bayesian estimation of individual pharmacokinetic parameters from a model defined in mrgsolve', typically for model-based therapeutic drug monitoring. Internally computes an objective function value from model and data, performs optimization and returns predictions in a convenient format. The performance of the package was described by Le Louedec et al (2021) <doi:10.1002/psp4.12689>.
Visualization of multi-dimensional data arising in multi-objective optimization, including plots of the empirical attainment function (EAF), M. López-Ibáñez, L. Paquete, and T. Stützle (2010) <doi:10.1007/978-3-642-02538-9_9>, and symmetric Vorob'ev expectation and deviation, M. Binois, D. Ginsbourger, O. Roustant (2015) <doi:10.1016/j.ejor.2014.07.032>, among others.
Create native charts for Microsoft PowerPoint and Microsoft Word documents. These can then be edited and annotated. Functions are provided to let users create charts, modify and format their content. The chart's underlying data is automatically saved within the Word document or PowerPoint presentation. It extends package officer that does not contain any feature for Microsoft native charts production.
Computes the prime implicants or a minimal disjunctive normal form for a logic expression presented by a truth table or a logic tree. Has been particularly developed for logic expressions resulting from a logic regression analysis, i.e. logic expressions typically consisting of up to 16 literals, where the prime implicants are typically composed of a maximum of 4 or 5 literals.
An efficient data integration method is provided for multiple spatial transcriptomics data with non-cluster-relevant effects such as the complex batch effects. It unifies spatial factor analysis simultaneously with spatial clustering and embedding alignment, requiring only partially shared cell/domain clusters across datasets. More details can be referred to Wei Liu, et al. (2023) <doi:10.1038/s41467-023-35947-w>.
This package provides functions for data normalization and transformation in preprocessing stages. Implements scaling methods (min-max, Z-score, L2 normalization) and power transformations (Box-Cox, Yeo-Johnson). Box-Cox transformation is described in Box and Cox (1964) <doi:10.1111/j.2517-6161.1964.tb00553.x>, Yeo-Johnson transformation in Yeo and Johnson (2000) <doi:10.1093/biomet/87.4.954>.
User-friendly framework that enables the training and the evaluation of species distribution models (SDMs). The package implements functions for data driven variable selection and model tuning and includes numerous utilities to display the results. All the functions used to select variables or to tune model hyperparameters have an interactive real-time chart displayed in the RStudio viewer pane during their execution.
An R Shiny application dedicated to the intra-site spatial analysis of piece-plotted archaeological remains, making the two and three-dimensional spatial exploration of archaeological data as user-friendly as possible. Documentation about SEAHORS is provided by the vignette included in this package and by the companion scientific paper: Royer, Discamps, Plutniak, Thomas (2023, PCI Archaeology, <doi:10.5281/zenodo.7674698>).
Extends the classical SSIM method proposed by Wang', Bovik', Sheikh', and Simoncelli'(2004) <doi:10.1109/TIP.2003.819861>. for irregular lattice-based maps and raster images. The geographical SSIM method incorporates well-developed geographically weighted summary statistics'('Brunsdon', Fotheringham and Charlton 2002) <doi:10.1016/S0198-9715(01)00009-6> with an adaptive bandwidth kernel function for irregular lattice-based maps.
This is a user-friendly way to run a parallel factor (PARAFAC) analysis (Harshman, 1971) <doi:10.1121/1.1977523> on excitation emission matrix (EEM) data from dissolved organic matter (DOM) samples (Murphy et al., 2013) <doi:10.1039/c3ay41160e>. The analysis includes profound methods for model validation. Some additional functions allow the calculation of absorbance slope parameters and create beautiful plots.'.
Perform a Visual Predictive Check (VPC), while accounting for stratification, censoring, and prediction correction. Using piping from magrittr', the intuitive syntax gives users a flexible and powerful method to generate VPCs using both traditional binning and a new binless approach Jamsen et al. (2018) <doi:10.1002/psp4.12319> with Additive Quantile Regression (AQR) and Locally Estimated Scatterplot Smoothing (LOESS) prediction correction.
Up-and-Down (UD) is the most popular design approach for dose-finding, but it has been severely under-served by the statistical and computing communities. This is the first package that comprehensively addresses UD's needs. Recent applied UD tutorial: Oron et al., 2022 <doi:10.1097/ALN.0000000000004282>. Recent methodological overview: Oron and Flournoy, 2024 <doi:10.51387/24-NEJSDS74>.
Simulates and evaluates stochastic scenarios of death and lapse events in life reinsurance contracts with profit commissions. The methodology builds on materials published by the Institute of Actuaries of Japan <https://www.actuaries.jp/examin/textbook/pdf/modeling.pdf>. A paper describing the detailed algorithms will be published by the author within a few months after the initial release of this package.
The renewal Hawkes (RHawkes) process (Wheatley, Filimonov, and Sornette, 2016 <doi:10.1016/j.csda.2015.08.007>) is an extension to the classical Hawkes self-exciting point process widely used in the modelling of clustered event sequence data. This package provides functions to simulate the RHawkes process with a given immigrant hazard rate function and offspring birth time density function, to compute the exact likelihood of a RHawkes process using the recursive algorithm proposed by Chen and Stindl (2018) <doi:10.1080/10618600.2017.1341324>, to compute the Rosenblatt residuals for goodness-of-fit assessment, and to predict future event times based on observed event times up to a given time. A function implementing the linear time RHawkes process likelihood approximation algorithm proposed in Stindl and Chen (2021) <doi:10.1007/s11222-021-10002-0> is also included.
Visualizing crystal structures and selected area electron diffraction (SAED) patterns. It provides functions cry_demo() and dp_demo() to load a file in CIF (Crystallographic Information Framework) formats and display crystal structures and electron diffraction patterns. The function dp_demo() also performs simple simulation of powder X-ray diffraction (PXRD) patterns, and the results can be saved to a file in the working directory. The package has been tested on several platforms, including Linux on Crostini with a Coreâ ¢ m3-8100Y Chromebook, I found that even on this low-powered platform, the performance was acceptable. T. Hanashima (2001) <https://www2.kek.jp/imss/pf/tools/sasaki/sinram/sinram.html> Todd Helmenstine (2019) <https://sciencenotes.org/molecule-atom-colors-cpk-colors/> Wikipedia contributors (2023) <https://en.wikipedia.org/w/index.php?title=Atomic_radius&oldid=1179864711>.
The bayNorm package is used for normalizing single-cell RNA-seq data. The main function is bayNorm, which is a wrapper function for gene specific prior parameter estimation and normalization. The input is a matrix of scRNA-seq data with rows different genes and columns different cells. The output is either point estimates from posterior (2D array) or samples from posterior (3D array).
IONiseR provides tools for the quality assessment of Oxford Nanopore MinION data. It extracts summary statistics from a set of fast5 files and can be used either before or after base calling. In addition to standard summaries of the read-types produced, it provides a number of plots for visualising metrics relative to experiment run time or spatially over the surface of a flowcell.
This package provides tools for normalizing and analyzing of GeneChip Mapping 100K and 500K Set. Affymetrix GeneChip Human Mapping 100K and 500K Set allows the DNA copy number mea- surement of respectively 2× 50K and 2× 250K SNPs along the genome. Their high density allows a precise localization of genomic alterations and makes them a powerful tool for cancer and copy number polymorphism study.
This package provides tools for defensive programming. It is inspired by purrr mappers and based on rlang. Attempt extends and facilitates defensive programming by providing a consistent grammar, and a set of functions for common tests and conditions. Attempt only depends on rlang, and focuses on speed, so it can be integrated with other functions and used in the data analysis.
The two main functionalities of this package are creating mock objects (functions) and selectively intercepting calls to a given function that originate in some other function. It can be used with any testing framework available for R. Mock objects can be injected with either this package's own stub function or a similar with_mock facility present in the testthat package.