The BioPlex package implements access to the BioPlex protein-protein interaction networks and related resources from within R. Besides protein-protein interaction networks for HEK293 and HCT116 cells, this includes access to CORUM protein complex data, and transcriptome and proteome data for the two cell lines. Functionality focuses on importing the various data resources and storing them in dedicated Bioconductor data structures, as a foundation for integrative downstream analysis of the data.
This package implements topological gene set analysis using a two-step empirical approach. It exploits graph decomposition theory to create a junction tree and reconstruct the most relevant signal path. In the first step clipper selects significant pathways according to statistical tests on the means and the concentration matrices of the graphs derived from pathway topologies. Then, it "clips" the whole pathway identifying the signal paths having the greatest association with a specific phenotype.
Spaniel includes a series of tools to aid the quality control and analysis of Spatial Transcriptomics data. Spaniel can import data from either the original Spatial Transcriptomics system or 10X Visium technology. The package contains functions to create a SingleCellExperiment Seurat object and provides a method of loading a histologial image into R. The spanielPlot function allows visualisation of metrics contained within the S4 object overlaid onto the image of the tissue.
Statial is a suite of functions for identifying changes in cell state. The functionality provided by Statial provides robust quantification of cell type localisation which are invariant to changes in tissue structure. In addition to this Statial uncovers changes in marker expression associated with varying levels of localisation. These features can be used to explore how the structure and function of different cell types may be altered by the agents they are surrounded with.
This tool proposes a new ranking algorithm that utilizes a "Y*WAASB" biplot generated by the metan'. The aim of the current package is to effectively distinguish the top-ranked genotypes in MET (Multi-Environmental Trials). For a detailed explanation of the process of obtaining "WAASB", "WAASBY" indices, and a "Y*WAASB" biplot, refer to the manual included in this package as well as the study by Olivoto & Lúcio (2020) <doi:10.1111/2041-210X.13384>. In this context, "WAASB" refers to the "Weighted Average of Absolute Scores" provided by Olivoto et al. (2019) <doi:10.2134/agronj2019.03.0220>, which quantifies the stability of genotypes across different environments using linear mixed-effect models. To run the package, you need to extract the "WAASB" and "WAASBY" coefficients using the metan and apply them. This tool utilizes PCA (Principal Component Analysis) and differentiates the entries which may be genotypes, hybrids, varieties, etc using "WAASB", "WAASBY", and a combination of the specified trait and WAASB index.
This package provides an R interface to Extreme Gradient Boosting, which is an efficient implementation of the gradient boosting framework from Chen and Guestrin (2016). The package includes efficient linear model solver and tree learning algorithms. The package can automatically do parallel computation on a single machine. It supports various objective functions, including regression, classification and ranking. The package is made to be extensible, so that users are also allowed to define their own objectives easily.
Archimax copulas are a mixture of Archimedean and EV copulas. This package provides definitions of several parametric families of generator and dependence function, computes CDF and PDF, estimates parameters, tests for goodness of fit, generates random sample and checks copula properties for custom constructs. In the 2-dimensional case explicit formulas for density are used, contrary to higher dimensions when all derivatives are linearly approximated. Several non-archimax families (normal, FGM, Plackett) are provided as well.
This package provides a toolbox for programming Clinical Data Interchange Standards Consortium (CDISC) compliant Analysis Data Model (ADaM) datasets in R. ADaM datasets are a mandatory part of any New Drug or Biologics License Application submitted to the United States Food and Drug Administration (FDA). Analysis derivations are implemented in accordance with the "Analysis Data Model Implementation Guide" (CDISC Analysis Data Model Team, 2021, <https://www.cdisc.org/standards/foundational/adam>).
This package implements a web-based graphics device for animated visualisations. Modelled on the base syntax, it extends the base graphics functions to support frame-by-frame animation and keyframes animation. The target use cases are real-time animated visualisations, including agent-based models, dynamical systems, and animated diagrams. The generated visualisations can be deployed as GIF images / MP4 videos, as Shiny apps (with interactivity) or as HTML documents through embedding into R Markdown documents.
This package provides data science tools for conservation science, including methods for environmental data analysis, humidity calculations, sustainability metrics, engineering calculations, and data visualisation. Supports conservators, scientists, and engineers working with cultural heritage preventive conservation data. The package is motivated by the framework outlined in Cosaert and Beltran et al. (2022) "Tools for the Analysis of Collection Environments" <https://www.getty.edu/conservation/publications_resources/pdf_publications/tools_for_the_analysis_of_collection_environments.html>.
In tumor tissue, underlying genomic instability can lead to DNA copy number alterations, e.g., copy number gains or losses. Sporadic copy number alterations occur randomly throughout the genome, whereas recurrent alterations are observed in the same genomic region across multiple independent samples, perhaps because they provide a selective growth advantage. This package implements the DiNAMIC procedure for assessing the statistical significance of recurrent DNA copy number aberrations (Bioinformatics (2011) 27(5) 678 - 685).
Discrete splines are a class of univariate piecewise polynomial functions which are analogous to splines, but whose smoothness is defined via divided differences rather than derivatives. Tools for efficient computations relating to discrete splines are provided here. These tools include discrete differentiation and integration, various matrix computations with discrete derivative or discrete spline bases matrices, and interpolation within discrete spline spaces. These techniques are described in Tibshirani (2020) <doi:10.48550/arXiv.2003.03886>.
Clustered or multilevel data structures are common in the assessment of differential item functioning (DIF), particularly in the context of large-scale assessment programs. This package allows users to implement extensions of the Mantel-Haenszel DIF detection procedures in the presence of multilevel data based on the work of Begg (1999) <doi:10.1111/j.0006-341X.1999.00302.x>, Begg & Paykin (2001) <doi:10.1080/00949650108812115>, and French & Finch (2013) <doi:10.1177/0013164412472341>.
The purpose of the package is to enable an R function interface into the Statistics Denmark Databank API mainly for research purposes. The Statistics Denmark Databank API has four endpoints, see here for more information and testing the API in their console: <https://www.dst.dk/en/Statistik/brug-statistikken/muligheder-i-statistikbanken/api>. This package mimics the structure of the API and provides four main functions to match the functionality of the API endpoints.
Fit and visualize the results of a Bayesian analysis of networks commonly found in psychology. The package supports fitting cross-sectional network models fitted using the packages BDgraph', bgms and BGGM'. The package provides the parameter estimates, posterior inclusion probabilities, inclusion Bayes factor, and the posterior density of the parameters. In addition, for BDgraph and bgms it allows to assess the posterior structure space. Furthermore, the package comes with an extensive suite for visualizing results.
Fit the hierarchical and non-hierarchical Bayesian measurement models proposed by Bullock, Imai, and Shapiro (2011) <DOI:10.1093/pan/mpr031> to analyze endorsement experiments. Endorsement experiments are a survey methodology for eliciting truthful responses to sensitive questions. This methodology is helpful when measuring support for socially sensitive political actors such as militant groups. The model is fitted with a Markov chain Monte Carlo algorithm and produces the output containing draws from the posterior distribution.
This package contains regional Floristic Quality Assessment databases that have been approved or approved with reservations by the U.S. Army Corps of Engineers (USACE). Paired with the fqacalc R package, these data sets allow for Floristic Quality Assessment metrics to be calculated. For information on FQA see Spyreas (2019) <doi:10.1002/ecs2.2825>. Both packages were developed for the USACE by the U.S. Army Engineer Research and Development Center's Environmental Laboratory.
Turn irregular polygons (such as geographical regions) into regular or hexagonal grids. This package enables the generation of regular (square) and hexagonal grids through the package sp and then assigns the content of the existing polygons to the new grid using the Hungarian algorithm, Kuhn (1955) (<doi:10.1007/978-3-540-68279-0_2>). This prevents the need for manual generation of hexagonal grids or regular grids that are supposed to reflect existing geography.
European Commission's Labour Market Policy (LMP) database (<https://webgate.ec.europa.eu/empl/redisstat/databrowser/explore/all/lmp?lang=en&display=card&sort=category>) provides information on labour market interventions, which are government actions to help and support the unemployed and other disadvantaged groups in the transition from unemployment or inactivity to work. It covers the EU countries and Norway. This package provides functions for downloading and importing the LMP data and metadata (codelists).
This package provides methods for estimating borders of uniform distribution on the interval (one-dimensional) and on the elliptical domain (two-dimensional) under measurement errors. For one-dimensional case, it also estimates the length of underlying uniform domain and tests the hypothesized length against two-sided or one-sided alternatives. For two-dimensional case, it estimates the area of underlying uniform domain. It works with numerical inputs as well as with pictures in JPG format.
This package provides a causal mediation framework for single-cell data that incorporates two key features ('MedZIsc', pronounced Magics): (1) zero-inflation using beta regression and (2) overdispersed expression counts using negative binomial regression. This approach also includes a screening step based on penalized and marginal models to handle high-dimensionality. Full methodological details are available in our recent preprint by Ahn S and Li Z (2025) <doi:10.48550/arXiv.2505.22986>.
This package provides a set of tools for testing networks. It includes functions for univariate and multivariate conditional uniform graph and quadratic assignment procedure testing, and network regression. The package is a complement to Multimodal Political Networks (2021, ISBN:9781108985000), and includes various datasets used in the book. Built on the manynet package, all functions operate with matrices, edge lists, and igraph', network', and tidygraph objects, and on one-mode and two-mode (bipartite) networks.
Computation of standardized interquartile range (IQR), Huber-type skipped mean (Hampel (1985), <doi:10.2307/1268758>), robust coefficient of variation (CV) (Arachchige et al. (2019), <doi:10.48550/arXiv.1907.01110>), robust signal to noise ratio (SNR), z-score, standardized mean difference (SMD), as well as functions that support graphical visualization such as boxplots based on quartiles (not hinges), negative logarithms and generalized logarithms for ggplot2 (Wickham (2016), ISBN:978-3-319-24277-4).
Estimators and variance estimators tailored to the NILS hierarchical design (Adler et al. 2020, <https://res.slu.se/id/publ/105630>; Grafström et al. 2023, <https://res.slu.se/id/publ/128235>). The National Inventories of Landscapes in Sweden (NILS) is a long-term national monitoring program that collects, analyses and presents data on Swedish nature, covering both common and rare habitats <https://www.slu.se/om-slu/organisation/institutioner/skoglig-resurshushallning/miljoanalys/nils/>.