Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Random variate generation, density, CDF and quantile function for the Argus distribution. Especially, it includes for random variate generation a flexible inversion method that is also fast in the varying parameter case. A Ratio-of-Uniforms method is provided as second alternative.
This package provides a project template to support the data science workflow.
Manage dependencies during package development. This can retrieve all dependencies that are used in ".R" files in the "R/" directory, in ".Rmd" files in "vignettes/" directory and in roxygen2 documentation of functions. There is a function to update the "DESCRIPTION" file of your package with CRAN packages or any other remote package. All functions to retrieve dependencies of ".R" scripts and ".Rmd" or ".qmd" files can be used independently of a package development.
Training of neural networks for classification and regression tasks using mini-batch gradient descent. Special features include a function for training autoencoders, which can be used to detect anomalies, and some related plotting functions. Multiple activation functions are supported, including tanh, relu, step and ramp. For the use of the step and ramp activation functions in detecting anomalies using autoencoders, see Hawkins et al. (2002) <doi:10.1007/3-540-46145-0_17>. Furthermore, several loss functions are supported, including robust ones such as Huber and pseudo-Huber loss, as well as L1 and L2 regularization. The possible options for optimization algorithms are RMSprop, Adam and SGD with momentum. The package contains a vectorized C++ implementation that facilitates fast training through mini-batch learning.
Epidemiological population dynamics models traditionally define a pathogen's virulence as the increase in the per capita rate of mortality of infected hosts due to infection. This package provides functions allowing virulence to be estimated by maximum likelihood techniques. The approach is based on the analysis of relative survival comparing survival in matching cohorts of infected vs. uninfected hosts (Agnew 2019) <doi:10.1101/530709>.
Programmatic interface to the NASA Application for Extracting and Exploring Analysis Ready Samples services (AppEEARS; <https://appeears.earthdatacloud.nasa.gov/>). The package provides easy access to analysis ready earth observation data in R.
Government Analysis Function recommended colours for use in charts on gov.uk to help meet accessibility guidance.
Implementation of the autocorrelated conditioned Latin Hypercube Sampling (acLHS) algorithm for 1D (time-series) and 2D (spatial) data. The acLHS algorithm is an extension of the conditioned Latin Hypercube Sampling (cLHS) algorithm that allows sampled data to have similar correlative and statistical features of the original data. Only a properly formatted dataframe needs to be provided to yield subsample indices from the primary function. For more details about the cLHS algorithm, see Minasny and McBratney (2006), <doi:10.1016/j.cageo.2005.12.009>. For acLHS, see Le and Vargas (2024) <doi:10.1016/j.cageo.2024.105539>.
This package implements Collective And Point Anomaly (CAPA) Fisch, Eckley, and Fearnhead (2022) <doi:10.1002/sam.11586>, Multi-Variate Collective And Point Anomaly (MVCAPA) Fisch, Eckley, and Fearnhead (2021) <doi:10.1080/10618600.2021.1987257>, Proportion Adaptive Segment Selection (PASS) Jeng, Cai, and Li (2012) <doi:10.1093/biomet/ass059>, and Bayesian Abnormal Region Detector (BARD) Bardwell and Fearnhead (2015) <doi:10.1214/16-BA998>. These methods are for the detection of anomalies in time series data. Further information regarding the use of this package along with detailed examples can be found in Fisch, Grose, Eckley, Fearnhead, and Bardwell (2024) <doi:10.18637/jss.v110.i01>.
To address the violation of the assumption of normally distributed variables, researchers frequently employ bootstrapping. Building upon established packages for R (Sigmann et al. (2024) <doi:10.32614/CRAN.package.afex>, Lenth (2024) <doi:10.32614/CRAN.package.emmeans>), we provide bootstrapping functions to approximate a normal distribution of the parameter estimates for between-subject, within-subject, and mixed one-way and two-way ANOVA.
This package provides a collection of tools for the analysis of animal movements.
Visualization of antibody titer scores is valuable for examination of vaccination effects. AntibodyTiters visualizes antibody titers of all or selected patients. This package also produces empty excel files in a specified format, in which users can fill in experimental data for visualization. Excel files with toy data can also be produced, so that users can see how it is visualized before obtaining real data. The data should contain titer scores at pre-vaccination, after-1st shot, after-2nd shot, and at least one additional sampling points. Patients with missing values can be included. The first two sampling points (pre-vaccination and after-1st shot) will be plotted discretely, whereas those following will be plotted on a continuous time scale that starts from the day of second shot. Half-life of titer can also be calculated for each pair of sampling points.
We propose an age-dependent topic modelling (ATM) model, providing a low-rank representation of longitudinal records of hundreds of distinct diseases in large electronic health record data sets. The model assigns to each individual topic weights for several disease topics; each disease topic reflects a set of diseases that tend to co-occur as a function of age, quantified by age-dependent topic loadings for each disease. The model assumes that for each disease diagnosis, a topic is sampled based on the individualâ s topic weights (which sum to 1 across topics, for a given individual), and a disease is sampled based on the individualâ s age and the age-dependent topic loadings (which sum to 1 across diseases, for a given topic at a given age). The model generalises the Latent Dirichlet Allocation (LDA) model by allowing topic loadings for each topic to vary with age. References: Jiang (2023) <doi:10.1038/s41588-023-01522-8>.
Confidence curves, confidence intervals and p-values for correlation coefficients corrected for attenuation due to measurement error. Implements the methods described in Moss (2019, <arxiv:1911.01576>).
Several cubic spline interpolation methods of H. Akima for irregular and regular gridded data are available through this package, both for the bivariate case (irregular data: ACM 761, regular data: ACM 760) and univariate case (ACM 433 and ACM 697). Linear interpolation of irregular gridded data is also covered by reusing D. J. Renkas triangulation code which is part of Akimas Fortran code. A bilinear interpolator for regular grids was also added for comparison with the bicubic interpolator on regular grids. Please note that most of the functions are now also covered in package interp, which is a re-implementation from scratch under a free license.
Manage keys, certificates, secrets, and storage accounts in Microsoft's Key Vault service: <https://azure.microsoft.com/products/key-vault/>. Provides facilities to store and retrieve secrets, use keys to encrypt, decrypt, sign and verify data, and manage certificates. Integrates with the AzureAuth package to enable authentication with a certificate, and with the openssl package for importing and exporting cryptographic objects. Part of the AzureR family of packages.
An unofficial companion to the textbook "Applied Regression Analysis" by N.R. Draper and H. Smith (3rd Ed., 1998) including all the accompanying datasets.
Add-on to the airGR package which provides the tools to assimilate observed discharges in daily GR hydrological models. The package consists in two functions allowing to perform the assimilation of observed discharges via the Ensemble Kalman filter or the Particle filter as described in Piazzi et al. (2021) <doi:10.1029/2020WR028390>.
Fits a linear-binomial model using a modified Newton-type algorithm for solving the maximum likelihood estimation problem under linear box constraints. Similar methods are described in Wagenpfeil, Schöpe and Bekhit (2025, ISBN:9783111341972) "Estimation of adjusted relative risks in log-binomial regression using the BSW algorithm". In: Mau, Mukhin, Wang and Xu (Eds.), Biokybernetika. De Gruyter, Berlin, pp. 665â 676.
Model that assesses daily exposure to air pollution, which considers daily population mobility on a geographical scale and the spatial and temporal variability of pollutant concentrations, in addition to traditional parameters such as exposure time and pollutant concentration.
Enables users of ArcGIS Enterprise', ArcGIS Online', or ArcGIS Platform to read, write, publish, or manage vector and raster data via ArcGIS location services REST API endpoints <https://developers.arcgis.com/rest/>.
The functions in this package inspect, read, edit and run files for APSIM "Next Generation" ('JSON') and APSIM "Classic" ('XML'). The files with an apsim extension correspond to APSIM Classic (7.x) - Windows only - and the ones with an apsimx extension correspond to APSIM "Next Generation". For more information about APSIM see (<https://www.apsim.info/>) and for APSIM next generation (<https://apsimnextgeneration.netlify.app/>).
API for using episensr', Basic sensitivity analysis of the observed relative risks adjusting for unmeasured confounding and misclassification of the exposure/outcome, or both. See <https://cran.r-project.org/package=episensr>.
Collect your data on digital marketing campaigns from Awin using the Windsor.ai API <https://windsor.ai/api-fields/>.