Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools for Bayesian parameter estimation of adsorption isotherm models using Markov Chain Monte Carlo (MCMC) methods. This package enables users to fit non-linear and linear adsorption isotherm modelsâ Freundlich, Langmuir, and Temkinâ within a probabilistic framework, capturing uncertainty and parameter correlations. It provides posterior summaries, 95% credible intervals, convergence diagnostics (Gelman-Rubin), and visualizations through trace and density plots. With this R package, researchers can rigorously analyze adsorption behavior in environmental and chemical systems using robust Bayesian inference. For more details, see Gilks et al. (1995) <doi:10.1201/b14835>, and Gamerman & Lopes (2006) <doi:10.1201/9781482296426>.
Original idea was presented in the thesis "A statistical analysis tool for agricultural research" to obtain the degree of Master on science, National Engineering University (UNI), Lima-Peru. Some experimental data for the examples come from the CIP and others research. Agricolae offers extensive functionality on experimental design especially for agricultural and plant breeding experiments, which can also be useful for other purposes. It supports planning of lattice, Alpha, Cyclic, Complete Block, Latin Square, Graeco-Latin Squares, augmented block, factorial, split and strip plot designs. There are also various analysis facilities for experimental data, e.g. treatment comparison procedures and several non-parametric tests comparison, biodiversity indexes and consensus cluster.
Adaptive Rejection Sampling, Original version.
Imports Azure Application Insights for web pages into Shiny apps via Microsoft's JavaScript snippet. Allows app developers to submit page tracking and submit events.
Construct language-aware lists. Make "and"-separated and "or"-separated lists that automatically conform to the user's language settings.
An evaluation framework for algorithm portfolios using Item Response Theory (IRT). We use continuous and polytomous IRT models to evaluate algorithms and introduce algorithm characteristics such as stability, effectiveness and anomalousness (Kandanaarachchi, Smith-Miles 2020) <doi:10.13140/RG.2.2.11363.09760>.
Package that simulates adaptive (multi-arm, multi-stage) clinical trials using adaptive stopping, adaptive arm dropping, and/or adaptive randomisation. Developed as part of the INCEPT (Intensive Care Platform Trial) project (<https://incept.dk/>), primarily supported by a grant from Sygeforsikringen "danmark" (<https://www.sygeforsikring.dk/>).
This package provides a collection of functions to construct A-optimal block designs for comparing test treatments with one or more control(s). Mainly A-optimal balanced treatment incomplete block designs, weighted A-optimal balanced treatment incomplete block designs, A-optimal group divisible treatment designs and A-optimal balanced bipartite block designs can be constructed using the package. The designs are constructed using algorithms based on linear integer programming. To the best of our knowledge, these facilities to construct A-optimal block designs for comparing test treatments with one or more controls are not available in the existing R packages. For more details on designs for tests versus control(s) comparisons, please see Hedayat, A. S. and Majumdar, D. (1984) <doi:10.1080/00401706.1984.10487989> A-Optimal Incomplete Block Designs for Control-Test Treatment Comparisons, Technometrics, 26, 363-370 and Mandal, B. N. , Gupta, V. K., Parsad, Rajender. (2017) <doi:10.1080/03610926.2015.1071394> Balanced treatment incomplete block designs through integer programming. Communications in Statistics - Theory and Methods 46(8), 3728-3737.
This package provides functions for age-period-cohort analysis. Aggregate data can be organised in matrices indexed by age-cohort, age-period or cohort-period. The data can include dose and response or just doses. The statistical model is a generalized linear model (GLM) allowing for 3,2,1 or 0 of the age-period-cohort factors. 2-sample analysis is possible. Mixed frequency data are possible. Individual-level data should have a row for each individual and columns for each of age, period, and cohort. The statistical model for repeated cross-section is a generalized linear model. The statistical model for panel data is ordinary least squares. The canonical parametrisation of Kuang, Nielsen and Nielsen (2008) <DOI:10.1093/biomet/asn026> is used. Thus, the analysis does not rely on ad hoc identification.
The Aligned Corpus Toolkit (act) is designed for linguists that work with time aligned transcription data. It offers functions to import and export various annotation file formats ('ELAN .eaf, EXMARaLDA .exb and Praat .TextGrid files), create print transcripts in the style of conversation analysis, search transcripts (span searches across multiple annotations, search in normalized annotations, make concordances etc.), export and re-import search results (.csv and Excel .xlsx format), create cuts for the search results (print transcripts, audio/video cuts using FFmpeg and video sub titles in Subrib title .srt format), modify the data in a corpus (search/replace, delete, filter etc.), interact with Praat using Praat'-scripts, and exchange data with the rPraat package. The package is itself written in R and may be expanded by other users.
This package provides alternatives to the normal adjusted R-squared estimator for the estimation of the multiple squared correlation in regression models, as fitted by the lm() function. The alternative estimators are described in Karch (2020) <DOI:10.1525/collabra.343>.
Designed for the development and application of hidden Markov models and profile HMMs for biological sequence analysis. Contains functions for multiple and pairwise sequence alignment, model construction and parameter optimization, file import/export, implementation of the forward, backward and Viterbi algorithms for conditional sequence probabilities, tree-based sequence weighting, and sequence simulation. Features a wide variety of potential applications including database searching, gene-finding and annotation, phylogenetic analysis and sequence classification. Based on the models and algorithms described in Durbin et al (1998, ISBN: 9780521629713).
An interface to Azure Data Explorer', also known as Kusto', a fast, distributed data exploration service from Microsoft: <https://azure.microsoft.com/en-us/products/data-explorer/>. Includes DBI and dplyr interfaces, with the latter modelled after the dbplyr package, whereby queries are translated from R into the native KQL query language and executed lazily. On the admin side, the package extends the object framework provided by AzureRMR to support creation and deletion of databases, and management of database principals. Part of the AzureR family of packages.
Fetching data from Amazon Kinesis Streams using the Java-based MultiLangDaemon interacting with Amazon Web Services ('AWS') for easy stream processing from R. For more information on Kinesis', see <https://aws.amazon.com/kinesis>.
It performs All-Resolutions Inference (ARI) on functional Magnetic Resonance Image (fMRI) data. As a main feature, it estimates lower bounds for the proportion of active voxels in a set of clusters as, for example, given by a cluster-wise analysis. The method is described in Rosenblatt, Finos, Weeda, Solari, Goeman (2018) <doi:10.1016/j.neuroimage.2018.07.060>.
The generated wealth of immune repertoire sequencing data requires software to investigate and quantify inter- and intra-antibody repertoire evolution to uncover how B cells evolve during immune responses. Here, we present AntibodyForests', a software to investigate and quantify inter- and intra-antibody repertoire evolution.
Computes and integrates daily potential evapotranspiration (PET) and a soil water balance model. It allows users to estimate and predict the wet season calendar, including onset, cessation, and duration, based on an agroclimatic approach for a specified period. This functionality helps in managing agricultural water resources more effectively. For detailed methodologies, users can refer to Allen et al. (1998, ISBN:92-5-104219-5); Allen (2005, ISBN:9780784408056); Doorenbos and Pruitt (1975, ISBN:9251002797); Guo et al. (2016) <doi:10.1016/j.envsoft.2015.12.019>; Hargreaves and Samani (1985) <doi:10.13031/2013.26773>; Priestley and Taylor (1972) <https://journals.ametsoc.org/view/journals/apme/18/7/1520-0450_1979_018_0898_tptema_2_0_co_2.xml>.
An interface to Azure Queue Storage'. This is a cloud service for storing large numbers of messages, for example from automated sensors, that can be accessed remotely via authenticated calls using HTTP or HTTPS. Queue storage is often used to create a backlog of work to process asynchronously. Part of the AzureR family of packages.
This package implements Collective And Point Anomaly (CAPA) Fisch, Eckley, and Fearnhead (2022) <doi:10.1002/sam.11586>, Multi-Variate Collective And Point Anomaly (MVCAPA) Fisch, Eckley, and Fearnhead (2021) <doi:10.1080/10618600.2021.1987257>, Proportion Adaptive Segment Selection (PASS) Jeng, Cai, and Li (2012) <doi:10.1093/biomet/ass059>, and Bayesian Abnormal Region Detector (BARD) Bardwell and Fearnhead (2015) <doi:10.1214/16-BA998>. These methods are for the detection of anomalies in time series data. Further information regarding the use of this package along with detailed examples can be found in Fisch, Grose, Eckley, Fearnhead, and Bardwell (2024) <doi:10.18637/jss.v110.i01>.
Facilitate the analysis of data related to aquatic ecology, specifically the establishment of carbon budget. Currently, the package allows the below analysis. (i) the calculation of greenhouse gas flux based on data obtained from trace gas analyzer using the method described in Lin et al. (2024). (ii) the calculation of Dissolved Oxygen (DO) metabolism based on data obtained from dissolved oxygen data logger using the method described in Staehr et al. (2010). Yong et al. (2024) <doi:10.5194/bg-21-5247-2024>. Staehr et al. (2010) <doi:10.4319/lom.2010.8.0628>.
This package implements an innovative approach to community detection in social networks using Association Rules Learning. The package provides tools for processing graph and rules objects, generating association rules, and detecting communities based on node interactions. Designed to facilitate advanced research in Social Network Analysis, this package leverages association rules learning for enhanced community detection. This approach is described in El-Moussaoui et al. (2021) <doi:10.1007/978-3-030-66840-2_3>.
R Interface to AutoKeras <https://autokeras.com/>. AutoKeras is an open source software library for Automated Machine Learning (AutoML). The ultimate goal of AutoML is to provide easily accessible deep learning tools to domain experts with limited data science or machine learning background. AutoKeras provides functions to automatically search for architecture and hyperparameters of deep learning models.
Create ASCII line graphs of a time series directly on your terminal in an easy way. There are some configurations you can add to make the plot the way you like. This project was inspired by the original asciichart package by Igor Kroitor.
Create beautiful and interactive visualizations in a single function call. The data.table package is utilized to perform the data wrangling necessary to prepare your data for the plot types you wish to build, along with allowing fast processing for big data. There are two broad classes of plots available: standard plots and machine learning evaluation plots. There are lots of parameters available in each plot type function for customizing the plots (such as faceting) and data wrangling (such as variable transformations and aggregation).