Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
MetaboDynamics is an R-package that provides a framework of probabilistic models to analyze longitudinal metabolomics data. It enables robust estimation of mean concentrations despite varying spread between timepoints and reports differences between timepoints as well as metabolite specific dynamics profiles that can be used for identifying "dynamics clusters" of metabolites of similar dynamics. Provides probabilistic over-representation analysis of KEGG functional modules and pathways as well as comparison between clusters of different experimental conditions.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was Medicago\_probe\_tab.
This package provides tools for detecting drug-protein interactions and estimating IC50 values from chemoproteomics data. Implements semi-parametric isotonic regression, bootstrapping, and curve fitting to evaluate compound effects on protein abundance.
This package is designed for the import, quality control, analysis, and visualization of methylation data generated using Sequenom's MassArray platform. The tools herein contain a highly detailed amplicon prediction for optimal assay design. Also included are quality control measures of data, such as primer dimer and bisulfite conversion efficiency estimation. Methylation data are calculated using the same algorithms contained in the EpiTyper software package. Additionally, automatic SNP-detection can be used to flag potentially confounded data from specific CG sites. Visualization includes barplots of methylation data as well as UCSC Genome Browser-compatible BED tracks. Multiple assays can be positionally combined for integrated analysis.
Identification of diferentially methylated regions (DMRs) in predefined regions (promoters, CpG islands...) from the human genome using Illumina's 450K or EPIC microarray data. Provides methods to rank CpG probes based on linear models and includes plotting functions.
This package provides a package containing an environment representing the Mu6500subB.CDF file.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was Mu11KsubA\_probe\_tab.
MSstatsConvert provides tools for importing reports of Mass Spectrometry data processing tools into R format suitable for statistical analysis using the MSstats and MSstatsTMT packages.
Based on a large miRNA dilution study, this package provides tools to read in the raw amplification data and use these data to assess the performance of methods that estimate expression from the amplification curves.
Codelink UniSet Mouse I Bioarray (~10 000 mouse gene targets) annotation data (chip m10kcod) assembled using data from public repositories.
This package aims to perform power analysis for the MeRIP-seq study. It calculates FDR, FDC, power, and precision under various study design parameters, including but not limited to sample size, sequencing depth, and testing method. It can also output results into .xlsx files or produce corresponding figures of choice.
markeR is an R package that provides a modular and extensible framework for the systematic evaluation of gene sets as phenotypic markers using transcriptomic data. The package is designed to support both quantitative analyses and visual exploration of gene set behaviour across experimental and clinical phenotypes. It implements multiple methods, including score-based and enrichment approaches, and also allows the exploration of expression behaviour of individual genes. In addition, users can assess the similarity of their own gene sets against established collections (e.g., those from MSigDB), facilitating biological interpretation.
mbQTL is a statistical R package for simultaneous 16srRNA,16srDNA (microbial) and variant, SNP, SNV (host) relationship, correlation, regression studies. We apply linear, logistic and correlation based statistics to identify the relationships of taxa, genus, species and variant, SNP, SNV in the infected host. We produce various statistical significance measures such as P values, FDR, BC and probability estimation to show significance of these relationships. Further we provide various visualization function for ease and clarification of the results of these analysis. The package is compatible with dataframe, MRexperiment and text formats.
Mass spectrometry (MS) data backend supporting import and export of MS/MS spectra data from Mascot Generic Format (mgf) files. Objects defined in this package are supposed to be used with the Spectra Bioconductor package. This package thus adds mgf file support to the Spectra package.
Subset of BAM files, including WT_2.bam, Null_2.bam, Resc_2.bam, Input.bam from the "Cfp1" experiment (see Clouaire et al., Genes Dev. 2012). Data is available under ArrayExpress accession numbers E-ERAD-79. Additionally, corresponding subset of peaks called by MACS.
Codelink UniSet Mouse 20k I Bioarray annotation data (chip m20kcod) assembled using data from public repositories.
Package to integrate methylation and expression data. It can also perform methylation or expression analysis alone. Several plotting functionalities are included as well as a new region analysis based on redundancy analysis. Effect of SNPs on a region can also be estimated.
Package includes functions to analyze and mask microarray expression data.
Microbiome time series simulation with generalized Lotka-Volterra model, Self-Organized Instability (SOI), and other models. Hubbell's Neutral model is used to determine the abundance matrix. The resulting abundance matrix is applied to (Tree)SummarizedExperiment objects.
Codelink Mouse Whole Genome Bioarray (~36 000 mouse gene targets) annotation data (chip mwgcod) assembled using data from public repositories.
Motivation: The understanding of cancer mechanism requires the identification of genes playing a role in the development of the pathology and the characterization of their role (notably oncogenes and tumor suppressors). Results: We present an R/bioconductor package called MoonlightR which returns a list of candidate driver genes for specific cancer types on the basis of TCGA expression data. The method first infers gene regulatory networks and then carries out a functional enrichment analysis (FEA) (implementing an upstream regulator analysis, URA) to score the importance of well-known biological processes with respect to the studied cancer type. Eventually, by means of random forests, MoonlightR predicts two specific roles for the candidate driver genes: i) tumor suppressor genes (TSGs) and ii) oncogenes (OCGs). As a consequence, this methodology does not only identify genes playing a dual role (e.g. TSG in one cancer type and OCG in another) but also helps in elucidating the biological processes underlying their specific roles. In particular, MoonlightR can be used to discover OCGs and TSGs in the same cancer type. This may help in answering the question whether some genes change role between early stages (I, II) and late stages (III, IV) in breast cancer. In the future, this analysis could be useful to determine the causes of different resistances to chemotherapeutic treatments.
Agilent annotation data (chip mgug4104a) assembled using data from public repositories.
This package primarily identifies variants in mitochondrial genomes from BAM alignment files. It filters these variants to remove RNA editing events then estimates their evolutionary relationship (i.e. their phylogenetic tree) and groups single cells into clones. It also visualizes the mutations and providing additional genomic context.
Indole-3-acetaldoxime (IAOx) represents an early intermediate of the biosynthesis of a variety of indolic secondary metabolites including the phytoanticipin indol-3-ylmethyl glucosinolate and the phytoalexin camalexin (3-thiazol-2'-yl-indole). Arabidopsis thaliana cyp79B2 cyp79B3 double knockout plants are completely impaired in the conversion of tryptophan to indole-3-acetaldoxime and do not accumulate IAOx-derived metabolites any longer. Consequently, comparative analysis of wild-type and cyp79B2 cyp79B3 plant lines has the potential to explore the complete range of IAOx-derived indolic secondary metabolites.