This package provides a Bayesian meta-analysis method for studying cross-phenotype genetic associations. It uses summary-level data across multiple phenotypes to simultaneously measure the evidence of aggregate-level pleiotropic association and estimate an optimal subset of traits associated with the risk locus. CPBayes is based on a spike and slab prior. The methodology is available from: A Majumdar, T Haldar, S Bhattacharya, JS Witte (2018) <doi:10.1371/journal.pgen.1007139>.
The CalMaTe method calibrates preprocessed allele-specific copy number estimates (ASCNs) from DNA microarrays by controlling for single-nucleotide polymorphism-specific allelic crosstalk. The resulting ASCNs are on average more accurate, which increases the power of segmentation methods for detecting changes between copy number states in tumor studies including copy neutral loss of heterozygosity. CalMaTe applies to any ASCNs regardless of preprocessing method and microarray technology, e.g. Affymetrix and Illumina.
An open, multi-algorithmic pipeline for easy, fast and efficient analysis of cellular sub-populations and the molecular signatures that characterize them. The pipeline consists of four successive steps: data pre-processing, cellular clustering with pseudo-temporal ordering, defining differential expressed genes and biomarker identification. More details on Ghannoum et. al. (2021) <doi:10.3390/ijms22031399>. This package implements extensions of the work published by Ghannoum et. al. (2019) <doi:10.1101/700989>.
Makes the Genepop software available in R. This software implements a mixture of traditional population genetic methods and some more focused developments: it computes exact tests for Hardy-Weinberg equilibrium, for population differentiation and for genotypic disequilibrium among pairs of loci; it computes estimates of F-statistics, null allele frequencies, allele size-based statistics for microsatellites, etc.; and it performs analyses of isolation by distance from pairwise comparisons of individuals or population samples.
Perform high dimensional Feature Selection in the presence of survival outcome. Based on Feature Selection method and different survival analysis, it will obtain the best markers with optimal threshold levels according to their effect on disease progression and produce the most consistent level according to those threshold values. The functions methodology is based on by Sonabend et al (2021) <doi:10.1093/bioinformatics/btab039> and Bhattacharjee et al (2021) <arXiv:2012.02102>.
Providing mean partition for ensemble clustering by optimal transport alignment(OTA), uncertainty measures for both partition-wise and cluster-wise assessment and multiple visualization functions to show uncertainty, for instance, membership heat map and plot of covering point set. A partition refers to an overall clustering result. Jia Li, Beomseok Seo, and Lin Lin (2019) <doi:10.1002/sam.11418>. Lixiang Zhang, Lin Lin, and Jia Li (2020) <doi:10.1093/bioinformatics/btaa165>.
An environment to simulate the development of annual plant populations with regard to population dynamics and genetics, especially herbicide resistance. It combines genetics on the individual level (Renton et al. 2011) with a stochastic development on the population level (Daedlow, 2015). Renton, M, Diggle, A, Manalil, S and Powles, S (2011) <doi:10.1016/j.jtbi.2011.05.010> Daedlow, Daniel (2015, doctoral dissertation: University of Rostock, Faculty of Agriculture and Environmental Sciences.).
This package provides functions for estimating ploidy levels and detecting aneuploidy in individuals using allele intensities or allele count data from high-throughput genotyping platforms, including single nucleotide polymorphism (SNP) arrays and sequencing-based technologies. Implements an extended version of the PennCNV signal standardization method by Wang et al. (2007) <doi:10.1101/gr.6861907> for higher ploidy levels. Computes B-allele frequencies (BAF), z-scores, and identifies copy number variation patterns.
Utility functions for scale-dependent and alternative hyperpriors. The distribution parameters may capture location, scale, shape, etc. and every parameter may depend on complex additive terms (fixed, random, smooth, spatial, etc.) similar to a generalized additive model. Hyperpriors for all effects can be elicitated within the package. Including complex tensor product interaction terms and variable selection priors. The basic model is explained in in Klein and Kneib (2016) <doi:10.1214/15-BA983>.
This package provides functions to create and manage research compendiums for data analysis. Research compendiums are a standard and intuitive folder structure for organizing the digital materials of a research project, which can significantly improve reproducibility. The package offers several compendium structure options that fit different research project as well as the ability of duplicating the folder structure of existing projects or implementing custom structures. It also simplifies the use of version control.
This package provides some code to run simulations of state-space models, and then use these in the Approximate Bayesian Computation Sequential Monte Carlo (ABC-SMC) algorithm of Toni et al. (2009) <doi:10.1098/rsif.2008.0172> and a bootstrap particle filter based particle Markov chain Monte Carlo (PMCMC) algorithm (Andrieu et al., 2010 <doi:10.1111/j.1467-9868.2009.00736.x>). Also provides functions to plot and summarise the outputs.
Fit, summarize, and predict for a variety of spatial statistical models applied to point-referenced and areal (lattice) data. Parameters are estimated using various methods. Additional modeling features include anisotropy, non-spatial random effects, partition factors, big data approaches, and more. Model-fit statistics are used to summarize, visualize, and compare models. Predictions at unobserved locations are readily obtainable. For additional details, see Dumelle et al. (2023) <doi:10.1371/journal.pone.0282524>.
Newly developed methods for the estimation of several probabilities in an illness-death model. The package can be used to obtain nonparametric and semiparametric estimates for: transition probabilities, occupation probabilities, cumulative incidence function and the sojourn time distributions. Additionally, it is possible to fit proportional hazards regression models in each transition of the Illness-Death Model. Several auxiliary functions are also provided which can be used for marginal estimation of the survival functions.
This package provides a collection of functions to deal with spatial and spatiotemporal autoregressive conditional heteroscedasticity (spatial ARCH and GARCH models) by Otto, Schmid, Garthoff (2018, Spatial Statistics) <doi:10.1016/j.spasta.2018.07.005>: simulation of spatial ARCH-type processes (spARCH, log/exponential-spARCH, complex-spARCH); quasi-maximum-likelihood estimation of the parameters of spARCH models and spatial autoregressive models with spARCH disturbances, diagnostic checks, visualizations.
The base tools union() intersect(), etc., follow the algebraic definition that each element of a set must be unique. Since it's often helpful to compare all elements of two vectors, this toolset treats every element as unique for counting purposes. For ease of use, all functions in vecsets have an argument multiple which, when set to FALSE, reverts them to the base::sets (alias for all the items) tools functionality.
An R interface for processing concentration-response datasets using Curvep, a response noise filtering algorithm. The algorithm was described in the publications (Sedykh A et al. (2011) <doi:10.1289/ehp.1002476> and Sedykh A (2016) <doi:10.1007/978-1-4939-6346-1_14>). Other parametric fitting approaches (e.g., Hill equation) are also adopted for ease of comparison. 3-parameter Hill equation from tcpl package (Filer D et al., <doi:10.1093/bioinformatics/btw680>) and 4-parameter Hill equation from Curve Class2 approach (Wang Y et al., <doi:10.2174/1875397301004010057>) are available. Also, methods for calculating the confidence interval around the activity metrics are also provided. The methods are based on the bootstrap approach to simulate the datasets (Hsieh J-H et al. <doi:10.1093/toxsci/kfy258>). The simulated datasets can be used to derive the baseline noise threshold in an assay endpoint. This threshold is critical in the toxicological studies to derive the point-of-departure (POD).
This package provides alternative statistical methods for meta-analysis, including:
bivariate generalized linear mixed models for synthesizing odds ratios, relative risks, and risk differences
heterogeneity tests and measures that are robust to outliers;
measures, tests, and visualization tools for publication bias or small-study effects;
meta-analysis of diagnostic tests for synthesizing sensitivities, specificities, etc.;
meta-analysis methods for synthesizing proportions;
models for multivariate meta-analysis.
The BioPlex package implements access to the BioPlex protein-protein interaction networks and related resources from within R. Besides protein-protein interaction networks for HEK293 and HCT116 cells, this includes access to CORUM protein complex data, and transcriptome and proteome data for the two cell lines. Functionality focuses on importing the various data resources and storing them in dedicated Bioconductor data structures, as a foundation for integrative downstream analysis of the data.
This package implements topological gene set analysis using a two-step empirical approach. It exploits graph decomposition theory to create a junction tree and reconstruct the most relevant signal path. In the first step clipper selects significant pathways according to statistical tests on the means and the concentration matrices of the graphs derived from pathway topologies. Then, it "clips" the whole pathway identifying the signal paths having the greatest association with a specific phenotype.
Statial is a suite of functions for identifying changes in cell state. The functionality provided by Statial provides robust quantification of cell type localisation which are invariant to changes in tissue structure. In addition to this Statial uncovers changes in marker expression associated with varying levels of localisation. These features can be used to explore how the structure and function of different cell types may be altered by the agents they are surrounded with.
Spaniel includes a series of tools to aid the quality control and analysis of Spatial Transcriptomics data. Spaniel can import data from either the original Spatial Transcriptomics system or 10X Visium technology. The package contains functions to create a SingleCellExperiment Seurat object and provides a method of loading a histologial image into R. The spanielPlot function allows visualisation of metrics contained within the S4 object overlaid onto the image of the tissue.
This package provides a collection of functions to calculate Composite Indicators methods, focusing, in particular, on the normalisation and weighting-aggregation steps, as described in OECD Handbook on constructing composite indicators: methodology and user guide, 2008, Vidoli and Fusco and Mazziotta <doi:10.1007/s11205-014-0710-y>, Mazziotta and Pareto (2016) <doi:10.1007/s11205-015-0998-2>, Van Puyenbroeck and Rogge <doi:10.1016/j.ejor.2016.07.038> and other authors.
The number of bird or bat fatalities from collisions with buildings, towers or wind energy turbines can be estimated based on carcass searches and experimentally assessed carcass persistence times and searcher efficiency. Functions for estimating the probability that a bird or bat that died is found by a searcher are provided. Further functions calculate the posterior distribution of the number of fatalities based on the number of carcasses found and the estimated detection probability.
This package provides automated methods for downloading, recoding, and merging selected years of the Current Population Survey's Voting and Registration Supplement, a large N national survey about registration, voting, and non-voting in United States federal elections. Provides documentation for appropriate use of sample weights to generate statistical estimates, drawing from Hur & Achen (2013) <doi:10.1093/poq/nft042> and McDonald (2018) <http://www.electproject.org/home/voter-turnout/voter-turnout-data>.