European Commission's Labour Market Policy (LMP) database (<https://webgate.ec.europa.eu/empl/redisstat/databrowser/explore/all/lmp?lang=en&display=card&sort=category>) provides information on labour market interventions, which are government actions to help and support the unemployed and other disadvantaged groups in the transition from unemployment or inactivity to work. It covers the EU countries and Norway. This package provides functions for downloading and importing the LMP data and metadata (codelists).
This package provides a causal mediation framework for single-cell data that incorporates two key features ('MedZIsc', pronounced Magics): (1) zero-inflation using beta regression and (2) overdispersed expression counts using negative binomial regression. This approach also includes a screening step based on penalized and marginal models to handle high-dimensionality. Full methodological details are available in our recent preprint by Ahn S and Li Z (2025) <doi:10.48550/arXiv.2505.22986>.
Computation of standardized interquartile range (IQR), Huber-type skipped mean (Hampel (1985), <doi:10.2307/1268758>), robust coefficient of variation (CV) (Arachchige et al. (2019), <doi:10.48550/arXiv.1907.01110>), robust signal to noise ratio (SNR), z-score, standardized mean difference (SMD), as well as functions that support graphical visualization such as boxplots based on quartiles (not hinges), negative logarithms and generalized logarithms for ggplot2 (Wickham (2016), ISBN:978-3-319-24277-4).
This package provides a set of tools for testing networks. It includes functions for univariate and multivariate conditional uniform graph and quadratic assignment procedure testing, and network regression. The package is a complement to Multimodal Political Networks (2021, ISBN:9781108985000), and includes various datasets used in the book. Built on the manynet package, all functions operate with matrices, edge lists, and igraph', network', and tidygraph objects, and on one-mode and two-mode (bipartite) networks.
Estimators and variance estimators tailored to the NILS hierarchical design (Adler et al. 2020, <https://res.slu.se/id/publ/105630>; Grafström et al. 2023, <https://res.slu.se/id/publ/128235>). The National Inventories of Landscapes in Sweden (NILS) is a long-term national monitoring program that collects, analyses and presents data on Swedish nature, covering both common and rare habitats <https://www.slu.se/om-slu/organisation/institutioner/skoglig-resurshushallning/miljoanalys/nils/>.
This package provides functions for normalizing psychometric test scores. The normalization aims at correcting the metrological properties of the psychometric tests such as the ceiling and floor effects and the curvilinearity (unequal interval scaling). Functions to compute and plot predictions in the natural scale of the psychometric test from the estimates of a linear mixed model estimated on the normalized scores are also provided. See Philipps et al (2014) <doi:10.1159/000365637> for details.
This package provides tools to process raster data and apply Otsu-based thresholding for burned area mapping and other image segmentation tasks. Implements the method described by Otsu (1979) <doi:10.1109/TSMC.1979.4310076>, a data-driven technique that determines an optimal threshold by maximizing the inter-class variance of pixel intensities. It includes validation functions to assess segmentation accuracy against reference data using standard accuracy metrics such as precision, recall, and F1-score.
An R implementation of the cross-platform, language-independent "port4me" algorithm (<https://github.com/HenrikBengtsson/port4me>), which (1) finds a free Transmission Control Protocol ('TCP') port in [1024,65535] that the user can open, (2) is designed to work in multi-user environments, (3), gives different users, different ports, (4) gives the user the same port over time with high probability, (5) gives different ports for different software tools, and (6) requires no configuration.
This package contains more modern tools for causal inference using regression standardization. Four general classes of models are implemented; generalized linear models, conditional generalized estimating equation models, Cox proportional hazards models, and shared frailty gamma-Weibull models. Methodological details are described in Sjölander, A. (2016) <doi:10.1007/s10654-016-0157-3>. Also includes functionality for doubly robust estimation for generalized linear models in some special cases, and the ability to implement custom models.
This package provides tools developed to facilitate the establishment of the rank and social hierarchy for gregarious animals by the Si method developed by Kondo & Hurnik (1990)<doi:10.1016/0168-1591(90)90125-W>. It is also possible to determine the number of agonistic interactions between two individuals, sociometric and dyadics matrix from dataset obtained through electronic bins. In addition, it is possible plotting the results using a bar plot, box plot, and sociogram.
Perform association test within linear mixed model framework using score test integrated with Empirical Bayes for genome-wide association study. Firstly, score test was conducted for each marker under linear mixed model framework, taking into account the genetic relatedness and population structure. And then all the potentially associated markers were selected with a less stringent criterion. Finally, all the selected markers were placed into a multi-locus model to identify the true quantitative trait nucleotide.
This package provides a Davidian curve defines a seminonparametric density, whose shape and flexibility can be tuned by easy to estimate parameters. Since a special case of a Davidian curve is the standard normal density, Davidian curves can be used for relaxing normality assumption in statistical applications (Zhang & Davidian, 2001) <doi:10.1111/j.0006-341X.2001.00795.x>. This package provides the density function, the gradient of the loglikelihood and a random generator for Davidian curves.
This package provides tools to perform hierarchical inference for one or multiple studies / data sets based on high-dimensional multivariate (generalised) linear models. A possible application is to perform hierarchical inference for GWA studies to find significant groups or single SNPs (if the signal is strong) in a data-driven and automated procedure. The method is based on an efficient hierarchical multiple testing correction and controls the FWER. The functions can easily be run in parallel.
Set of utility functions for viral quasispecies analysis with NGS data. Most functions are equally useful for metagenomic studies. There are three main types: (1) data manipulation and exploration—functions useful for converting reads to haplotypes and frequencies, repairing reads, intersecting strand haplotypes, and visualizing haplotype alignments. (2) diversity indices—functions to compute diversity and entropy, in which incidence, abundance, and functional indices are considered. (3) data simulation—functions useful for generating random viral quasispecies data.
This package provides a comprehensive reproducibility framework designed for R and bioinformatics workflows. Automatically captures the entire analysis environment including R session info, package versions, external tool versions ('Samtools', STAR', BWA', etc.), conda environments, reference genomes, data provenance with smart checksumming for large files, parameter choices, random seeds, and hardware specifications. Generates executable scripts with Docker', Singularity', and renv configurations. Integrates with workflow managers ('Nextflow', Snakemake', WDL', CWL') to ensure complete reproducibility of computational research workflows.
This package provides the basic functionality to interact with the Collatz conjecture. The parameterisation uses the same (P,a,b) notation as Conway's generalisations. Besides the function and reverse function, there is also functionality to retrieve the hailstone sequence, the "stopping time"/"total stopping time", or tree-graph. The only restriction placed on parameters is that both P and a can't be 0. For further reading, see <https://en.wikipedia.org/wiki/Collatz_conjecture>.
This package provides a collection of functions that have been developed to assist experimenter in modeling chemical degradation kinetic data. The selection of the appropriate degradation model and parameter estimation is carried out automatically as far as possible and is driven by a rigorous statistical interpretation of the results. The package integrates already available goodness-of-fit statistics for nonlinear models. In addition it allows data fitting with the nonlinear first-order multi-target (FOMT) model.
Computes the Extended Chen-Poisson (ecp) distribution, survival, density, hazard, cumulative hazard and quantile functions. It also allows to generate a pseudo-random sample from this distribution. The corresponding graphics are available. Functions to obtain measures of skewness and kurtosis, k-th raw moments, conditional k-th moments and mean residual life function were added. For details about ecp distribution, see Sousa-Ferreira, I., Abreu, A.M. & Rocha, C. (2023). <doi:10.57805/revstat.v21i2.405>.
Analyze functional data and its change points. Includes functionality to store and process data, summarize and validate assumptions, characterize and perform inference of change points, and provide visualizations. Data is stored as discretely collected observations without requiring the selection of basis functions. For more details see chapter 8 of Horvath and Rice (2024) <doi:10.1007/978-3-031-51609-2>. Additional papers are forthcoming. Focused works are also included in the documentation of corresponding functions.
Statistical tests widely utilized in biostatistics, public policy, and law. Along with the well-known tests for equality of means and variances, randomness, and measures of relative variability, the package contains new robust tests of symmetry, omnibus and directional tests of normality, and their graphical counterparts such as robust QQ plot, robust trend tests for variances, etc. All implemented tests and methods are illustrated by simulations and real-life examples from legal statistics, economics, and biostatistics.
Constructs genetic linkage maps in autopolyploid full-sib populations. Uses pairwise recombination fraction estimation as the first source of information to sequentially position allelic variants in specific homologous chromosomes. For situations where pairwise analysis has limited power, the algorithm relies on the multilocus likelihood obtained through a hidden Markov model (HMM). Methods are described in Mollinari and Garcia (2019) <doi:10.1534/g3.119.400378> and Mollinari et al. (2020) <doi:10.1534/g3.119.400620>.
This package provides statistical components, tables, and graphs that are useful in Quarto and RMarkdown reports and that produce Quarto elements for special formatting such as tabs and marginal notes and graphs. Some of the functions produce entire report sections with tabs, e.g., the missing data report created by missChk(). Functions for inserting variables and tables inside graphviz and mermaid diagrams are included, and so are special clinical trial graphics for adverse event reporting.
Tool for statistical simulations that have two components. One component generates the data and the other one analyzes the data. The main aims of the package are the reduction of the administrative source code (mainly loops and management code for the results) and a simple applicability of the package that allows the user to quickly learn how to work with it. Parallel computing is also supported. Finally, convenient functions are provided to summarize the simulation results.
Several statistical test functions as well as a function for exploratory data analysis to investigate classifiers allocating individuals to one of three disjoint and ordered classes. In a single classifier assessment the discriminatory power is compared to classification by chance. In a comparison of two classifiers the null hypothesis corresponds to equal discriminatory power of the two classifiers. See also "ROC Analysis for Classification and Prediction in Practice" by Nakas, Bantis and Gatsonis (2023), ISBN 9781482233704.