Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools for conducting Bayesian analyses and Bayesian model averaging (Kass and Raftery, 1995, <doi:10.1080/01621459.1995.10476572>, Hoeting et al., 1999, <doi:10.1214/ss/1009212519>). The package contains functions for creating a wide range of prior distribution objects, mixing posterior samples from JAGS and Stan models, plotting posterior distributions, and etc... The tools for working with prior distribution span from visualization, generating JAGS and bridgesampling syntax to basic functions such as rng, quantile, and distribution functions.
Models time-to-event data from interval-censored screening studies. It accounts for latent prevalence at baseline and incorporates misclassification due to imperfect test sensitivity. For usage details, see the package vignette ("BayesPIM_intro"). Further details can be found in T. Klausch, B. I. Lissenberg-Witte, and V. M. Coupe (2024), "A Bayesian prevalence-incidence mixture model for screening outcomes with misclassification", <doi:10.48550/arXiv.2412.16065>.
Search and access more than ten thousand datasets included in BCRPDATA (see <https://estadisticas.bcrp.gob.pe/estadisticas/series/ayuda/bcrpdata> for more information).
Adjusting the bias due to residual confounding (often called treatment selection bias) in estimating the treatment effect in a proportional hazard model, as described in Williamson et al. (2022) <doi:10.1158/1078-0432.ccr-21-2468>.
Best subset glm using information criteria or cross-validation, carried by using leaps algorithm (Furnival and Wilson, 1974) <doi:10.2307/1267601> or complete enumeration (Morgan and Tatar, 1972) <doi:10.1080/00401706.1972.10488918>. Implements PCR and PLS using AIC/BIC. Implements one-standard deviation rule for use with the caret package.
The Pritchard-Stephens-Donnelly (PSD) admixture model has k intermediate subpopulations from which n individuals draw their alleles dictated by their individual-specific admixture proportions. The BN-PSD model additionally imposes the Balding-Nichols (BN) allele frequency model to the intermediate populations, which therefore evolved independently from a common ancestral population T with subpopulation-specific FST (Wright's fixation index) parameters. The BN-PSD model can be used to yield complex population structures. This simulation approach is now extended to subpopulations related by a tree. Method described in Ochoa and Storey (2021) <doi:10.1371/journal.pgen.1009241>.
Reads several formats of 13C data (IRIS/Wagner, BreathID) and CSV. Creates artificial sample data for testing. Fits Maes/Ghoos, Bluck-Coward self-correcting formula using nls', nlme'. Methods to fit breath test curves with Bayesian Stan methods are refactored to package breathteststan'. For a Shiny GUI, see package dmenne/breathtestshiny on github.
Utility functions, datasets and extended examples for survival analysis. This extends a range of other packages, some simple wrappers for time-to-event analyses, datasets, and extensive examples in HTML with R scripts. The package also supports the course Biostatistics III entitled "Survival analysis for epidemiologists in R".
This package implements Bayesian brain mapping models, including the prior ICA (independent components analysis) model proposed in Mejia et al. (2020) <doi:10.1080/01621459.2019.1679638> and the spatial prior ICA model proposed in proposed in Mejia et al. (2022) <doi:10.1080/10618600.2022.2104289>. Both models estimate subject-level brain as deviations from known population-level networks, which are estimated using standard ICA algorithms. Both models employ an expectation-maximization algorithm for estimation of the latent brain networks and unknown model parameters. Includes direct support for CIFTI', GIFTI', and NIFTI neuroimaging file formats.
This package provides methods for piecewise smooth regression. A piecewise smooth signal is estimated by applying a bootstrapped test recursively (binary segmentation approach). Each bootstrapped test decides whether the underlying signal is smooth on the currently considered subsegment or contains at least one further change-point.
This package provides functionality for determining the sample size of replication studies using Bayesian design approaches in the normal-normal hierarchical model (Pawel et al., 2022) <doi:10.48550/arXiv.2211.02552>.
This package provides tools for building Rescorla-Wagner Models for Two-Alternative Forced Choice tasks, commonly employed in psychological research. Most concepts and ideas within this R package are referenced from Sutton and Barto (2018) <ISBN:9780262039246>. The package allows for the intuitive definition of RL models using simple if-else statements and three basic models built into this R package are referenced from Niv et al. (2012)<doi:10.1523/JNEUROSCI.5498-10.2012>. Our approach to constructing and evaluating these computational models is informed by the guidelines proposed in Wilson & Collins (2019) <doi:10.7554/eLife.49547>. Example datasets included with the package are sourced from the work of Mason et al. (2024) <doi:10.3758/s13423-023-02415-x>.
This package provides tools that make it easier to validate data using Benford's Law.
Fit Bayesian models with a focus on the spatial econometric models.
This package provides a collection of functions to analyse, visualize and interpret wind data and to calculate the potential energy production of wind turbines.
This package implements variable selection for high dimensional datasets with a binary response variable using the EM algorithm. Both probit and logit models are supported. Also included is a useful function to generate high dimensional data with correlated variables.
Data processing tools to compute the rectified, integrated and the averaged EMG. Routines for automatic detection of activation phases. A routine to compute and plot the ensemble average of the EMG. An EMG signal simulator for general purposes.
Generates interactive bipartite graphs using the D3 library. Designed for use with the bipartite analysis package. Includes open source viz-js library Adapted from examples at <https://bl.ocks.org/NPashaP> (released under GPL-3).
An improved multiple testing procedure for controlling false discovery rates which is developed based on the Bonferroni procedure with integrated estimates from the Benjamini-Hochberg procedure and the Storey's q-value procedure. It controls false discovery rates through controlling the expected number of false discoveries.
This package implements likelihood inference for early epidemic analysis. BETS is short for the four key epidemiological events being modeled: Begin of exposure, End of exposure, time of Transmission, and time of Symptom onset. The package contains a dataset of the trajectory of confirmed cases during the coronavirus disease (COVID-19) early outbreak. More detail of the statistical methods can be found in Zhao et al. (2020) <arXiv:2004.07743>.
Estimates cumulative history for time-series for continuously viewed bistable perceptual rivalry displays. Computes cumulative history via a homogeneous first order differential process. I.e., it assumes exponential growth/decay of the history as a function time and perceptually dominant state, Pastukhov & Braun (2011) <doi:10.1167/11.10.12>. Supports Gamma, log normal, and normal distribution families. Provides a method to compute history directly and example of using the computation on a custom Stan code.
Propagate uncertainty from several estimates when combining these estimates via a function. This is done by using the parametric bootstrap to simulate values from the distribution of each estimate to build up an empirical distribution of the combined parameter. Finally either the percentile method is used or the highest density interval is chosen to derive a confidence interval for the combined parameter with the desired coverage. Gaussian copulas are used for when parameters are assumed to be dependent / correlated. References: Davison and Hinkley (1997,ISBN:0-521-57471-4) for the parametric bootstrap and percentile method, Gelman et al. (2014,ISBN:978-1-4398-4095-5) for the highest density interval, Stockdale et al. (2020)<doi:10.1016/j.jhep.2020.04.008> for an example of combining conditional prevalences.
This package provides a build system based on GNU make that creates and maintains (simply) make files in an R session and provides GUI debugging support through Microsoft Visual Code'.
This package provides tools to visualize ordination results in R by adding covariance-based ellipses, centroids, vectors, and confidence regions to plots created with ggplot2'. The package extends the vegan framework and supports Principal Component Analysis (PCA), Redundancy Analysis (RDA), and Non-metric Multidimensional Scaling (NMDS). Ellipses can represent either group dispersion (standard deviation, SD) or centroid precision (standard error, SE), following Wang et al. (2015) <doi:10.1371/journal.pone.0118537>. Robust estimators of covariance are implemented, including the Minimum Covariance Determinant (MCD) method of Hubert et al. (2018) <doi:10.1002/wics.1421>. This approach reduces the influence of outliers. barrel is particularly useful for multivariate ecological datasets, promoting reproducible, publication-quality ordination graphics with minimal effort.