Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a streamlined workflow for the quanTIseq method, developed to perform the quantification of the Tumor Immune contexture from RNA-seq data. The quantification is performed against the TIL10 signature (dissecting the contributions of ten immune cell types), carefully crafted from a collection of human RNA-seq samples. The TIL10 signature has been extensively validated using simulated, flow cytometry, and immunohistochemistry data.
This R package provides access to the Qtlizer web server. Qtlizer annotates lists of common small variants (mainly SNPs) and genes in humans with associated changes in gene expression using the most comprehensive database of published quantitative trait loci (QTLs).
qsea (quantitative sequencing enrichment analysis) was developed as the successor of the MEDIPS package for analyzing data derived from methylated DNA immunoprecipitation (MeDIP) experiments followed by sequencing (MeDIP-seq). However, qsea provides several functionalities for the analysis of other kinds of quantitative sequencing data (e.g. ChIP-seq, MBD-seq, CMS-seq and others) including calculation of differential enrichment between groups of samples.
In genomics, differential analysis enables the discovery of groups of genes implicating important biological processes such as cell differentiation and aging. Non-parametric tests of differential gene expression usually detect shifts in centrality (such as mean or median), and therefore suffer from diminished power against alternative hypotheses characterized by shifts in spread (such as variance). This package provides a flexible family of non-parametric two-sample tests and K-sample tests, which is based on theoretical work around non-parametric tests, spacing statistics and local asymptotic normality (Erdmann-Pham et al., 2022+ [arXiv:2008.06664v2]; Erdmann-Pham, 2023+ [arXiv:2209.14235v2]).
The package provides a framework for generic quality control of data. It permits to create, manage and visualise individual or sets of quality control metrics and generate quality control reports in various formats.
The data employed in the vignette of the QUBIC package. These data belong to Many Microbe Microarrays Database and STRING v10.
Estimate gene and eQTL networks from high-throughput expression and genotyping assays.
The core function of this R package is to provide the implementation of the well-cited and well-reviewed QUBIC algorithm, aiming to deliver an effective and efficient biclustering capability. This package also includes the following related functions: (i) a qualitative representation of the input gene expression data, through a well-designed discretization way considering the underlying data property, which can be directly used in other biclustering programs; (ii) visualization of identified biclusters using heatmap in support of overall expression pattern analysis; (iii) bicluster-based co-expression network elucidation and visualization, where different correlation coefficient scores between a pair of genes are provided; and (iv) a generalize output format of biclusters and corresponding network can be freely downloaded so that a user can easily do following comprehensive functional enrichment analysis (e.g. DAVID) and advanced network visualization (e.g. Cytoscape).
This package provides QDNAseq bin annotations for the human genome build hg19.
This package is an implementation the Quantitative Set Analysis for Gene Expression (QuSAGE) method described in (Yaari G. et al, Nucl Acids Res, 2013). This is a novel Gene Set Enrichment-type test, which is designed to provide a faster, more accurate, and easier to understand test for gene expression studies. qusage accounts for inter-gene correlations using the Variance Inflation Factor technique proposed by Wu et al. (Nucleic Acids Res, 2012). In addition, rather than simply evaluating the deviation from a null hypothesis with a single number (a P value), qusage quantifies gene set activity with a complete probability density function (PDF). From this PDF, P values and confidence intervals can be easily extracted. Preserving the PDF also allows for post-hoc analysis (e.g., pair-wise comparisons of gene set activity) while maintaining statistical traceability. Finally, while qusage is compatible with individual gene statistics from existing methods (e.g., LIMMA), a Welch-based method is implemented that is shown to improve specificity. The QuSAGE package also includes a mixed effects model implementation, as described in (Turner JA et al, BMC Bioinformatics, 2015), and a meta-analysis framework as described in (Meng H, et al. PLoS Comput Biol. 2019). For questions, contact Chris Bolen (cbolen1@gmail.com) or Steven Kleinstein (steven.kleinstein@yale.edu).
Affymetrix ragene21 annotation data (chip ragene21sttranscriptcluster) assembled using data from public repositories.
Second version of RareVariantVis package aims to provide comprehensive information about rare variants for your genome data. It annotates, filters and presents genomic variants (especially rare ones) in a global, per chromosome way. For discovered rare variants CRISPR guide RNAs are designed, so the user can plan further functional studies. Large structural variants, including copy number variants are also supported. Package accepts variants directly from variant caller - for example GATK or Speedseq. Output of package are lists of variants together with adequate visualization. Visualization of variants is performed in two ways - standard that outputs png figures and interactive that uses JavaScript d3 package. Interactive visualization allows to analyze trio/family data, for example in search for causative variants in rare Mendelian diseases, in point-and-click interface. The package includes homozygous region caller and allows to analyse whole human genomes in less than 30 minutes on a desktop computer. RareVariantVis disclosed novel causes of several rare monogenic disorders, including one with non-coding causative variant - keratolythic winter erythema.
This package provides a package that contains scala libraries to call GMQL from R used by RGMQL package. It contains a scalable data management engine written in Scala programming language.
RolDE detects longitudinal differential expression between two conditions in noisy high-troughput data. Suitable even for data with a moderate amount of missing values.RolDE is a composite method, consisting of three independent modules with different approaches to detecting longitudinal differential expression. The combination of these diverse modules allows RolDE to robustly detect varying differences in longitudinal trends and expression levels in diverse data types and experimental settings.
The rmspc package runs MSPC (Multiple Sample Peak Calling) software using R. The analysis of ChIP-seq samples outputs a number of enriched regions (commonly known as "peaks"), each indicating a protein-DNA interaction or a specific chromatin modification. When replicate samples are analyzed, overlapping peaks are expected. This repeated evidence can therefore be used to locally lower the minimum significance required to accept a peak. MSPC uses combined evidence from replicated experiments to evaluate peak calling output, rescuing peaks, and reduce false positives. It takes any number of replicates as input and improves sensitivity and specificity of peak calling on each, and identifies consensus regions between the input samples.
R-package with shiny interface, provides a framework for the analysis of transcriptomics, proteomics and/or metabolomics data. The interface offers a guided experience for the user, from the definition of the experimental design to the integration of several omics table together. A report can be generated with all settings and analysis results.
Haplotype simulations of rare variant genetic data that emulates real data can be performed with RAREsim. RAREsim uses the expected number of variants in MAC bins - either as provided by default parameters or estimated from target data - and an abundance of rare variants as simulated HAPGEN2 to probabilistically prune variants. RAREsim produces haplotypes that emulate real sequencing data with respect to the total number of variants, allele frequency spectrum, haplotype structure, and variant annotation.
"Spaced Words Projection (SWeeP)" is a method for representing biological sequences using vectors preserving inter-sequence comparability.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was RaGene-1\_0-st-v1\_probe\_tab.
Several quantitative and visualized benchmarks for RNA-seq quantification pipelines. Two-condition quantifications for genes, transcripts, junctions or exons by each pipeline with necessary meta information should be organized into numeric matrices in order to proceed the evaluation.
This package implements the QUBIC algorithm introduced by Li et al. for the qualitative biclustering with gene expression data.
This package provides utilities to re-use content across chapters of a Bioconductor book. This is mostly based on functionality developed while writing the OSCA book, but generalized for potential use in other large books with heavy compute. Also contains some functions to assist book deployment.
RRBS data set comprising 12 samples with simulated differentially methylated regions (DMRs).
Seamlessly interfaces the Basic Local Alignment Search Tool (BLAST) running locally to search genetic sequence data bases. This work was partially supported by grant no. R21HG005912 from the National Human Genome Research Institute.