Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions are included for recalling AQL (Acceptable Quality Level or Acceptance Quality Level) Based single, double, and multiple attribute sampling plans from the Military Standard (MIL-STD-105E) - American National Standards Institute/American Society for Quality (ANSI/ASQ Z1.4) tables and for retrieving variable sampling plans from Military Standard (MIL-STD-414) - American National Standards Institute/American Society for Quality (ANSI/ASQ Z1.9) tables. The sources for these tables are listed in the URL: field. Also included are functions for computing the OC (Operating Characteristic) and ASN (Average Sample Number) coordinates for the attribute plans it recalls, and functions for computing the estimated proportion nonconforming and the maximum allowable proportion nonconforming for variable sampling plans. The MIL-STD AQL Sampling schemes were the most used and copied set of standards in the world. They are intended to be used for sampling a stream of lots, and were used in contract agreements between supplier and customer companies. When the US military dropped support of MIL-STD 105E and 414, The American National Standards Institute (ANSI) and the International Standards Organization (ISO) adopted the standard with few changes or no changes to the central tables. This package is useful because its computer implementation of these tables duplicates that available in other commercial software and subscription online calculators.
Create a pie like plot to visualise if the aim or several aims of a project is achieved or close to be achieved i.e the aim is achieved when the point is at the center of the pie plot. Imagine it's like a dartboard and the center means 100% completeness/achievement. Achievement can also be understood as 100% coverage. The standard distribution of completeness allocated in the pie plot is 50%, 80% and 100% completeness.
We curated 147 of expression array, from 3 species(human,mouse,rat), 3 companies('Affymetrix','Illumina','Agilent'), by aligning the Fasta sequences of all probes of each platform to their corresponding reference genome, and then annotate them to genes.
This package provides tools to study sorting patterns in matching markets and to estimate the affinity matrix of both the bipartite one-to-one matching model without frictions and with Transferable Utility by Dupuy and Galichon (2014) <doi:10.1086/677191> and its unipartite variant by Ciscato', Galichon and Gousse (2020) <doi:10.1086/704611>. It also contains all the necessary tools to implement the saliency analysis, to run rank tests of the affinity matrix and to build tables and plots summarizing the findings.
Estimate diagnosis performance (Sensitivity, Specificity, Positive predictive value, Negative predicted value) of a diagnostic test where can not measure the golden standard but can estimate it using the attributable fraction.
In total it has 7 functions, three for calculating machine calibration, which determine application rate (L/ha), nozzle flow (L/min) and amount of product (L or kg) to be added. to the tank with each sprayer filling. Two functions for graphs of the flow distribution of the nozzles (L/min) in the application bar and, of the temporal variability of the meteorological conditions (air temperature, relative humidity of the air and wind speed). Two functions to determine the spray deposit (uL/cm2), through the methodology called spectrophotometry, with the aid of bright blue (Palladini, L.A., Raetano, C.G., Velini, E.D. (2005), <doi:10.1590/S0103-90162005000500005>) or metallic markers (Chaim, A., Castro, V.L.S.S., Correles, F.M., Galvão, J.A.H., Cabral, O.M.R., Nicolella, G. (1999), <doi:10.1590/S0100-204X1999000500003>). The package supports the analysis and representation of information, using a single free software that meets the most diverse areas of activity in application technology.
This package provides several methods for aggregating probabilistic forecasts. You have a group of people who have made probabilistic forecasts for the same event. You want to take advantage of the "wisdom of the crowd" and combine these forecasts in some sensible way. This package provides implementations of several strategies, including geometric mean of odds, an extremized aggregate (Neyman, Roughgarden (2021) <doi:10.1145/3490486.3538243>), and "high-density trimmed mean" (Powell et al. (2022) <doi:10.1037/dec0000191>).
This package provides statistical tools to analyze heterogeneous effects of rare variants within genes that are associated with multiple traits. The package implements methods for assessing pleiotropic effects and identifying allelic heterogeneity, which can be useful in large-scale genetic studies. Methods include likelihood-based statistical tests to assess these effects. For more details, see Lu et al. (2024) <doi:10.1101/2024.10.01.614806>.
We developed a lightweight machine learning tool for RNA profiling of acute lymphoblastic leukemia (ALL), however, it can be used for any problem where multiple classes need to be identified from multi-dimensional data. The methodology is described in Makinen V-P, Rehn J, Breen J, Yeung D, White DL (2022) Multi-cohort transcriptomic subtyping of B-cell acute lymphoblastic leukemia, International Journal of Molecular Sciences 23:4574, <doi:10.3390/ijms23094574>. The classifier contains optimized mean profiles of the classes (centroids) as observed in the training data, and new samples are matched to these centroids using the shortest Euclidean distance. Centroids derived from a dataset of 1,598 ALL patients are included, but users can train the models with their own data as well. The output includes both numerical and visual presentations of the classification results. Samples with mixed features from multiple classes or atypical values are also identified.
An iterative implementation of a recursive binary partitioning algorithm to measure pairwise dependence with a modular design that allows user specification of the splitting logic and stop criteria. Helper functions provide suggested versions of both and support visualization and the computation of summary statistics on final binnings. For a thorough discussion and demonstration of the algorithm, see Salahub and Oldford (2025) <doi:10.1002/sam.70042>.
This package contains functions to help create an Analysis Results Dataset. The dataset follows industry recommended structure. The dataset can be created in multiple passes, using different data frames as input. Analysis Results Datasets are used in the pharmaceutical and biotech industries to capture analysis in a common tabular data structure.
Data sets used in Cayuela and De la Cruz (2022, ISBN:978-84-8476-833-3).
Anscombe's quartet are a set of four two-variable datasets that have several common summary statistics but which have very different joint distributions. This becomes apparent when the data are plotted, which illustrates the importance of using graphical displays in Statistics. This package enables the creation of datasets that have identical marginal sample means and sample variances, sample correlation, least squares regression coefficients and coefficient of determination. The user supplies an initial dataset, which is shifted, scaled and rotated in order to achieve target summary statistics. The general shape of the initial dataset is retained. The target statistics can be supplied directly or calculated based on a user-supplied dataset. The datasauRus package <https://cran.r-project.org/package=datasauRus> provides further examples of datasets that have markedly different scatter plots but share many sample summary statistics.
Read, manipulate and write voxel spaces. Voxel spaces are read from text-based output files of the AMAPVox software. AMAPVox is a LiDAR point cloud voxelisation software that aims at estimating leaf area through several theoretical/numerical approaches. See more in the article Vincent et al. (2017) <doi:10.23708/1AJNMP> and the technical note Vincent et al. (2021) <doi:10.23708/1AJNMP>.
This package provides functions for estimating the attributable burden of disease due to risk factors. The posterior simulation is performed using arm::sim as described in Gelman, Hill (2012) <doi:10.1017/CBO9780511790942> and the attributable burden method is based on Nielsen, Krause, Molbak <doi:10.1111/irv.12564>.
This package provides a client for AWS Translate <https://aws.amazon.com/documentation/translate>, a machine translation service that will convert a text input in one language into a text output in another language.
Plot party trees in left-right orientation instead of the classical top-down layout.
Dynamic regression for time series using Extreme Gradient Boosting with hyper-parameter tuning via Bayesian Optimization or Random Search.
The process of resolving taxon names is necessary when working with biodiversity data. APCalign uses the Australian Plant Census (APC) and the Australian Plant Name Index (APNI) to align and update plant taxon names to current, accepted standards. APCalign also supplies information about the established status of plant taxa across different states/territories.
This package provides a shiny application to assess statistical assumptions and guide users toward appropriate tests. The app is designed for researchers with minimal statistical training and provides diagnostics, plots, and test recommendations for a wide range of analyses. Many statistical assumptions are implemented using the package rstatix (Kassambara, 2019) <doi:10.32614/CRAN.package.rstatix> and performance (Lüdecke et al., 2021) <doi:10.21105/joss.03139>.
This package provides a toolbox for programming Clinical Data Interchange Standards Consortium (CDISC) compliant Analysis Data Model (ADaM) datasets in R. ADaM datasets are a mandatory part of any New Drug or Biologics License Application submitted to the United States Food and Drug Administration (FDA). Analysis derivations are implemented in accordance with the "Analysis Data Model Implementation Guide" (CDISC Analysis Data Model Team, 2021, <https://www.cdisc.org/standards/foundational/adam>).
This package performs the two-sample Ansariâ Bradley test (Ansari & Bradley, 1960 <https://www.jstor.org/stable/2237814>) for univariate, distinct data in the presence of missing values, as described in Zeng et al. (2025) <doi:10.48550/arXiv.2509.20332>. This method does not make any assumptions about the missingness mechanisms and controls the Type I error regardless of the missing values by taking all possible missing values into account.
Analysis of complex plant root system architectures (RSA) using the output files created by Data Analysis of Root Tracings (DART), an open-access software dedicated to the study of plant root architecture and development across time series (Le Bot et al (2010) "DART: a software to analyse root system architecture and development from captured images", Plant and Soil, <DOI:10.1007/s11104-009-0005-2>), and RSA data encoded with the Root System Markup Language (RSML) (Lobet et al (2015) "Root System Markup Language: toward a unified root architecture description language", Plant Physiology, <DOI:10.1104/pp.114.253625>). More information can be found in Delory et al (2016) "archiDART: an R package for the automated computation of plant root architectural traits", Plant and Soil, <DOI:10.1007/s11104-015-2673-4>.
Choice models are a widely used technique across numerous scientific disciplines. The Apollo package is a very flexible tool for the estimation and application of choice models in R. Users are able to write their own model functions or use a mix of already available ones. Random heterogeneity, both continuous and discrete and at the level of individuals and choices, can be incorporated for all models. There is support for both standalone models and hybrid model structures. Both classical and Bayesian estimation is available, and multiple discrete continuous models are covered in addition to discrete choice. Multi-threading processing is supported for estimation and a large number of pre and post-estimation routines, including for computing posterior (individual-level) distributions are available. For examples, a manual, and a support forum, visit <https://www.ApolloChoiceModelling.com>. For more information on choice models see Train, K. (2009) <isbn:978-0-521-74738-7> and Hess, S. & Daly, A.J. (2014) <isbn:978-1-781-00314-5> for an overview of the field.