Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Uses locality sensitive hashing and creates a neighbourhood graph for a data set and calculates the adjusted rank index value for the same. It uses Gaussian random planes to decide the nature of a given point. Datar, Mayur, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni(2004) <doi:10.1145/997817.997857>.
The AIPW package implements the augmented inverse probability weighting, a doubly robust estimator, for average causal effect estimation with user-defined stacked machine learning algorithms. To cite the AIPW package, please use: "Yongqi Zhong, Edward H. Kennedy, Lisa M. Bodnar, Ashley I. Naimi (2021). AIPW: An R Package for Augmented Inverse Probability Weighted Estimation of Average Causal Effects. American Journal of Epidemiology. <doi:10.1093/aje/kwab207>". Visit: <https://yqzhong7.github.io/AIPW/> for more information.
Spatial modeling of energy balance and actual evapotranspiration using satellite images and meteorological data. Options of satellite are: Landsat-8 (with and without thermal bands), Sentinel-2 and MODIS. Respectively spatial resolutions are 30, 100, 10 and 250 meters. User can use data from a single meteorological station or a grid of meteorological stations (using any spatial interpolation method). Silva, Teixeira, and Manzione (2019) <doi:10.1016/j.envsoft.2019.104497>.
The goal of automatedRecLin is to perform record linkage (also known as entity resolution) in unsupervised or supervised settings. It compares pairs of records from two datasets using selected comparison functions to estimate the probability or density ratio between matched and non-matched records. Based on these estimates, it predicts a set of matches that maximizes entropy. For details see: Lee et al. (2022) <https://www150.statcan.gc.ca/n1/pub/12-001-x/2022001/article/00007-eng.htm>, Vo et al. (2023) <https://ideas.repec.org/a/eee/csdana/v179y2023ics0167947322002365.html>, Sugiyama et al. (2008) <doi:10.1007/s10463-008-0197-x>.
The centralized empirical cumulative average deviation function is utilized to develop both Ada-plot and Uda-plot as alternatives to Ad-plot and Ud-plot introduced by the author. Analogous to Ad-plot, Ada-plot can identify symmetry, skewness, and outliers of the data distribution. The Uda-plot is as exceptional as Ud-plot in assessing normality. The d-value that quantifies the degree of proximity between the Uda-plot and the graph of the estimated normal density function helps guide to make decisions on confirmation of normality. Extreme values in the data can be eliminated using the 1.5IQR rule to create its robust version if user demands. Full description of the methodology can be found in the article by Wijesuriya (2025a) <doi:10.1080/03610926.2025.2558108>. Further, the development of Ad-plot and Ud-plot is contained in both article and the adplots R package by Wijesuriya (2025b & 2025c) <doi:10.1080/03610926.2024.2440583> and <doi:10.32614/CRAN.package.adplots>.
Facilitates access to the data from the Atlas do Estado Brasileiro (<https://www.ipea.gov.br/atlasestado/>), maintained by the Instituto de Pesquisa Econômica Aplicada (Ipea). It allows users to search for specific series, list series or themes, and download data when available.
Which day a week starts depends heavily on the either the local or professional context. This package is designed to be a lightweight solution to easily switching between week-based date definitions.
Parsing R code is key to build tools such as linters and stylers. This package provides a binding to the Rust crate ast-grep so that one can parse and explore R code.
This package provides a weekly summary of Hass Avocado sales for the contiguous US from January 2017 through December 20204. See the package website for more information, documentation, and examples. Data source: Haas Avocado Board <https://hassavocadoboard.com/category-data/>.
Survival analysis is employed to model the time it takes for events to occur. Survival model examines the relationship between survival and one or more predictors, usually termed covariates in the survival-analysis literature. To this end, Cox-proportional (Cox-PH) hazard rate model introduced in a seminal paper by Cox (1972) <doi:10.1111/j.2517-6161.1972.tb00899.x>, is a broadly applicable and the most widely used method of survival analysis. This package can be used to estimate the effect of fixed and time-dependent covariates and also to compute the survival probabilities of the lactation of dairy animal. This package has been developed using algorithm of Klein and Moeschberger (2003) <doi:10.1007/b97377>.
This package provides an automatic aggregation tool to manage point data privacy, intended to be helpful for the production of official spatial data and for researchers. The package pursues the data accuracy at the smallest possible areas preventing individual information disclosure. The methodology, based on hierarchical geographic data structures performs aggregation and local suppression of point data to ensure privacy as described in Lagonigro, R., Oller, R., Martori J.C. (2017) <doi:10.2436/20.8080.02.55>. The data structures are created following the guidelines for grid datasets from the European Forum for Geography and Statistics.
This package implements anomaly detection as binary classification for cross-sectional data. Uses maximum likelihood estimates and normal probability functions to classify observations as anomalous. The method is presented in the following lecture from the Machine Learning course by Andrew Ng: <https://www.coursera.org/learn/machine-learning/lecture/C8IJp/algorithm/>, and is also described in: Aleksandar Lazarevic, Levent Ertoz, Vipin Kumar, Aysel Ozgur, Jaideep Srivastava (2003) <doi:10.1137/1.9781611972733.3>.
This package provides a shiny application to assess statistical assumptions and guide users toward appropriate tests. The app is designed for researchers with minimal statistical training and provides diagnostics, plots, and test recommendations for a wide range of analyses. Many statistical assumptions are implemented using the package rstatix (Kassambara, 2019) <doi:10.32614/CRAN.package.rstatix> and performance (Lüdecke et al., 2021) <doi:10.21105/joss.03139>.
This package provides a simple client package for the Amazon Web Services ('AWS') Lambda API <https://aws.amazon.com/lambda/>.
This package provides a collection of psychometric methods to process item metadata and use target assessment and measurement blueprint constraints to assemble a test form. Currently two automatic test assembly (ata) approaches are enabled. For example, the weighted (positive) deviations method, wdm(), proposed by Swanson and Stocking (1993) <doi:10.1177/014662169301700205> was implemented in its full specification allowing for both item selection as well as test form refinement. The linear constraint programming approach, atalp(), uses the linear equation solver by Berkelaar et. al (2014) <http://lpsolve.sourceforge.net/5.5/> to enable a variety of approaches to select items.
Algorithms for automatically finding appropriate thresholds for numerical data, with special functions for thresholding images. Provides the ImageJ Auto Threshold plugin functionality to R users. See <https://imagej.net/plugins/auto-threshold> and Landini et al. (2017) <DOI:10.1111/jmi.12474>.
Facilitate the analysis of data related to aquatic ecology, specifically the establishment of carbon budget. Currently, the package allows the below analysis. (i) the calculation of greenhouse gas flux based on data obtained from trace gas analyzer using the method described in Lin et al. (2024). (ii) the calculation of Dissolved Oxygen (DO) metabolism based on data obtained from dissolved oxygen data logger using the method described in Staehr et al. (2010). Yong et al. (2024) <doi:10.5194/bg-21-5247-2024>. Staehr et al. (2010) <doi:10.4319/lom.2010.8.0628>.
Formatter functions in the apa package take the return value of a statistical test function, e.g. a call to chisq.test() and return a string formatted according to the guidelines of the APA (American Psychological Association).
This package provides a testing framework for testing the multivariate point null hypothesis. A testing framework described in Elder et al. (2022) <arXiv:2203.01897> to test the multivariate point null hypothesis. After the user selects a parameter of interest and defines the assumed data generating mechanism, this information should be encoded in functions for the parameter estimator and its corresponding influence curve. Some parameter and data generating mechanism combinations have codings in this package, and are explained in detail in the article.
Stepwise Uncertainty Reduction criterion and algorithm for sequentially learning a Gaussian Process Classifier as described in Menz et al. (2025).
This package implements the Arellano-Bond estimation method combined with LASSO for dynamic linear panel models. See Chernozhukov et al. (2024) "Arellano-Bond LASSO Estimator for Dynamic Linear Panel Models". arXiv preprint <doi:10.48550/arXiv.2402.00584>.
Utilities for working with hourly air quality monitoring data with a focus on small particulates (PM2.5). A compact data model is structured as a list with two dataframes. A meta dataframe contains spatial and measuring device metadata associated with deployments at known locations. A data dataframe contains a datetime column followed by columns of measurements associated with each "device-deployment". Algorithms to calculate NowCast and the associated Air Quality Index (AQI) are defined at the US Environmental Projection Agency AirNow program: <https://document.airnow.gov/technical-assistance-document-for-the-reporting-of-daily-air-quailty.pdf>.
Access and manage the application programming interface (API) of the Armed Conflict Location & Event Data Project (ACLED) at <https://acleddata.com/>. The package makes it easy to retrieve a user-defined sample (or all of the available data) of ACLED, enabling a seamless integration of regular data updates into the research work flow. It requires a minimal number of dependencies. See the package's README file for a note on replicability when drawing on ACLED data. When using this package, you acknowledge that you have read ACLED's terms and conditions of use, and that you agree with their attribution requirements.
Lite interface for finding locations of addresses or businesses around the world using the ArcGIS REST API service <https://developers.arcgis.com/rest/geocode/api-reference/overview-world-geocoding-service.htm>. Address text can be converted to location candidates and a location can be converted into an address. No API key required.