Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Pair of simple convenience functions to convert a vector of birth dates to age and age distributions. These functions may be helpful when related age and custom age distributions are desired given a vector of birth dates.
Using of the accelerated line search algorithm for simultaneously diagonalize a set of symmetric positive definite matrices.
This package provides functions to efficiently query ArcGIS REST APIs <https://developers.arcgis.com/rest/>. Both spatial and SQL queries can be used to retrieve data. Simple Feature (sf) objects are utilized to perform spatial queries. This package was neither produced nor is maintained by Esri.
Probability surveys often use auxiliary continuous data from administrative records, but the utility of this data is diminished when it is discretized for confidentiality. We provide a set of survey estimators to make full use of information from the discretized variables. See Williams, S.Z., Zou, J., Liu, Y., Si, Y., Galea, S. and Chen, Q. (2024), Improving Survey Inference Using Administrative Records Without Releasing Individual-Level Continuous Data. Statistics in Medicine, 43: 5803-5813. <doi:10.1002/sim.10270> for details.
Plots simulation results of clinical trials. Its main feature is allowing users to simultaneously investigate the impact of several simulation input dimensions through dynamic filtering of the simulation results. A more detailed description of the app can be found in Meyer et al. <DOI:10.1016/j.softx.2023.101347> or the vignettes on GitHub'.
Helps enable adaptive management by codifying knowledge in the form of models generated from numerous analyses and data sets. Facilitates this process by storing all models and data sets in a single object that can be updated and saved, thus tracking changes in knowledge through time. A shiny application called AM Model Manager (modelMgr()) enables the use of these functions via a GUI.
Analysis of task-related functional magnetic resonance imaging (fMRI) activity at the level of individual participants is commonly based on general linear modelling (GLM) that allows us to estimate to what extent the blood oxygenation level dependent (BOLD) signal can be explained by task response predictors specified in the GLM model. The predictors are constructed by convolving the hypothesised timecourse of neural activity with an assumed hemodynamic response function (HRF). To get valid and precise estimates of task response, it is important to construct a model of neural activity that best matches actual neuronal activity. The construction of models is most often driven by predefined assumptions on the components of brain activity and their duration based on the task design and specific aims of the study. However, our assumptions about the onset and duration of component processes might be wrong and can also differ across brain regions. This can result in inappropriate or suboptimal models, bad fitting of the model to the actual data and invalid estimations of brain activity. Here we present an approach in which theoretically driven models of task response are used to define constraints based on which the final model is derived computationally using the actual data. Specifically, we developed autohrf â a package for the R programming language that allows for data-driven estimation of HRF models. The package uses genetic algorithms to efficiently search for models that fit the underlying data well. The package uses automated parameter search to find the onset and duration of task predictors which result in the highest fitness of the resulting GLM based on the fMRI signal under predefined restrictions. We evaluate the usefulness of the autohrf package on publicly available datasets of task-related fMRI activity. Our results suggest that by using autohrf users can find better task related brain activity models in a quick and efficient manner.
This package provides a tool to obtain activity counts, originally a translation of the python package agcounts <https://github.com/actigraph/agcounts>. This tool allows the processing of data from any accelerometer brand, with a more flexible approach to handle different sampling frequencies.
This package performs statistical testing to compare predictive models based on multiple observations of the A statistic (also known as Area Under the Receiver Operating Characteristic Curve, or AUC). Specifically, it implements a testing method based on the equivalence between the A statistic and the Wilcoxon statistic. For more information, see Hanley and McNeil (1982) <doi:10.1148/radiology.143.1.7063747>.
Addressing measurement error in covariates and misclassification in binary outcome variables within causal inference, the ATE.ERROR package implements inverse probability weighted estimation methods proposed by Shu and Yi (2017, <doi:10.1177/0962280217743777>; 2019, <doi:10.1002/sim.8073>). These methods correct errors to accurately estimate average treatment effects (ATE). The package includes two main functions: ATE.ERROR.Y() for handling misclassification in the outcome variable and ATE.ERROR.XY() for correcting both outcome misclassification and covariate measurement error. It employs logistic regression for treatment assignment and uses bootstrap sampling to calculate standard errors and confidence intervals, with simulated datasets provided for practical demonstration.
This package implements wavelet-based approaches for describing population admixture. Principal Components Analysis (PCA) is used to define the population structure and produce a localized admixture signal for each individual. Wavelet summaries of the PCA output describe variation present in the data and can be related to population-level demographic processes. For more details, see J Sanderson, H Sudoyo, TM Karafet, MF Hammer and MP Cox. 2015. Reconstructing past admixture processes from local genomic ancestry using wavelet transformation. Genetics 200:469-481 <doi:10.1534/genetics.115.176842>.
Calculating predictive model performance measures adjusted for predictor distributions using density ratio method (Sugiyama et al., (2012, ISBN:9781139035613)). L1 and L2 error for continuous outcome and C-statistics for binomial outcome are computed.
This package provides a simple driver that reads binary data created by the ASD Inc. portable spectrometer instruments, such as the FieldSpec (for more information, see <http://www.asdi.com/products/fieldspec-spectroradiometers>). Spectral data can be extracted from the ASD files as raw (DN), white reference, radiance, or reflectance. Additionally, the metadata information contained in the ASD file header can also be accessed.
Accumulated Local Effects (ALE) were initially developed as a model-agnostic approach for global explanations of the results of black-box machine learning algorithms. ALE has a key advantage over other approaches like partial dependency plots (PDP) and SHapley Additive exPlanations (SHAP): its values represent a clean functional decomposition of the model. As such, ALE values are not affected by the presence or absence of interactions among variables in a mode. Moreover, its computation is relatively rapid. This package reimplements the algorithms for calculating ALE data and develops highly interpretable visualizations for plotting these ALE values. It also extends the original ALE concept to add bootstrap-based confidence intervals and ALE-based statistics that can be used for statistical inference. For more details, see Okoli, Chitu. 2023. â Statistical Inference Using Machine Learning and Classical Techniques Based on Accumulated Local Effects (ALE).â arXiv. <doi:10.48550/arXiv.2310.09877>.
Calculates the optimal price of assets (such as airline flight seats, hotel room bookings) whose value becomes zero after a fixed ``expiry date''. Assumes potential customers arrive (possibly in groups) according to a known inhomogeneous Poisson process. Also assumes a known time-varying elasticity of demand (price sensitivity) function. Uses elementary techniques based on ordinary differential equations. Uses the package deSolve to effect the solution of these differential equations.
This package provides a free software for a fast and easy analysis of 1:1 molecular interaction studies. This package is suitable for a high-throughput data analysis. Both the online app and the package are completely open source. You provide a table of sensogram, tell anabel which method to use, and it takes care of all fitting details. The first two releases of anabel were created and implemented as in (<doi:10.1177/1177932218821383>, <doi:10.1093/database/baz101>).
This package provides an interface in R to cell atlas approximations. See the vignette under "Getting started" for instructions. You can also explore the reference documentation for specific functions. Additional interfaces and resources are available at <https://atlasapprox.readthedocs.io>.
This package provides tools to construct (or add to) cell-type signature matrices using flow sorted or single cell samples and deconvolve bulk gene expression data. Useful for assessing the quality of single cell RNAseq experiments, estimating the accuracy of signature matrices, and determining cell-type spillover. Please cite: Danziger SA et al. (2019) ADAPTS: Automated Deconvolution Augmentation of Profiles for Tissue Specific cells <doi:10.1371/journal.pone.0224693>.
This package provides the functions for planning and conducting a clinical trial with adaptive sample size determination. Maximal statistical efficiency will be exploited even when dramatic or multiple adaptations are made. Such a trial consists of adaptive determination of sample size at an interim analysis and implementation of frequentist statistical test at the interim and final analysis with a prefixed significance level. The required assumptions for the stage-wise test statistics are independent and stationary increments and normality. Predetermination of adaptation rule is not required.
This package provides a stacking solution for modeling imbalanced and severely skewed data. It automates the process of building homogeneous or heterogeneous stacked ensemble models by selecting "best" models according to different criteria. In doing so, it strategically searches for and selects diverse, high-performing base-learners to construct ensemble models optimized for skewed data. This package is particularly useful for addressing class imbalance in datasets, ensuring robust and effective model outcomes through advanced ensemble strategies which aim to stabilize the model, reduce its overfitting, and further improve its generalizability.
Several cubic spline interpolation methods of H. Akima for irregular and regular gridded data are available through this package, both for the bivariate case (irregular data: ACM 761, regular data: ACM 760) and univariate case (ACM 433 and ACM 697). Linear interpolation of irregular gridded data is also covered by reusing D. J. Renkas triangulation code which is part of Akimas Fortran code. A bilinear interpolator for regular grids was also added for comparison with the bicubic interpolator on regular grids. Please note that most of the functions are now also covered in package interp, which is a re-implementation from scratch under a free license.
Accompanies the book "Designing experiments and analyzing data: A model comparison perspective" (3rd ed.) by Maxwell, Delaney, & Kelley (2018; Routledge). Contains all of the data sets in the book's chapters and end-of-chapter exercises. Information about the book is available at <https://designingexperiments.com/>.
Simulation and pricing routines for rare-event options using Adaptive Multilevel Splitting and standard Monte Carlo under Black-Scholes and Heston models. Core routines are implemented in C++ via Rcpp and RcppArmadillo with lightweight R wrappers.
This package provides a project template to support the data science workflow.