Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Single-cell RNA-seq data for 1.3 million brain cells from E18 mice, generated by 10X Genomics.
Precompiled and processed miRNA-overexpression fold-changes from 84 Gene Expression Omnibus (GEO) series corresponding to 6 platforms, 77 human cells or tissues, and 113 distinct miRNAs. Accompanied with the data, we also included in this package the sequence feature scores from TargetScanHuman 6.1 including the context+ score and the probabilities of conserved targeting for each miRNA-mRNA interaction. Thus, the user can use these static sequence-based scores together with user-supplied tissue/cell-specific fold-change due to miRNA overexpression to predict miRNA targets using the package TargetScore (download separately).
The tidySummarizedExperiment package provides a set of tools for creating and manipulating tidy data representations of SummarizedExperiment objects. SummarizedExperiment is a widely used data structure in bioinformatics for storing high-throughput genomic data, such as gene expression or DNA sequencing data. The tidySummarizedExperiment package introduces a tidy framework for working with SummarizedExperiment objects. It allows users to convert their data into a tidy format, where each observation is a row and each variable is a column. This tidy representation simplifies data manipulation, integration with other tidyverse packages, and enables seamless integration with the broader ecosystem of tidy tools for data analysis.
Exposes an annotation databases generated from UCSC by exposing these as TxDb objects.
Rank results by confident effect sizes, while maintaining False Discovery Rate and False Coverage-statement Rate control. Topconfects is an alternative presentation of TREAT results with improved usability, eliminating p-values and instead providing confidence bounds. The main application is differential gene expression analysis, providing genes ranked in order of confident log2 fold change, but it can be applied to any collection of effect sizes with associated standard errors.
TADCompare is an R package designed to identify and characterize differential Topologically Associated Domains (TADs) between multiple Hi-C contact matrices. It contains functions for finding differential TADs between two datasets, finding differential TADs over time and identifying consensus TADs across multiple matrices. It takes all of the main types of HiC input and returns simple, comprehensive, easy to analyze results.
This is a collection of utility functions that allow to perform exploration of and calculations to RNA sequencing data, in a modular, pipe-friendly and tidy fashion.
This package provides functions for data analysis and graphical displays for developmental microarray time course data.
Exposes an annotation databases generated from UCSC by exposing these as TxDb objects.
Starting from one SBML file, it extracts information from each listOfCompartments, listOfSpecies and listOfReactions element by saving them into data frames. Each table provides one row for each entity (i.e. either compartment, species, reaction or speciesReference) and one set of columns for the attributes, one column for the content of the notes subelement and one set of columns for the content of the annotation subelement.
Exposes an annotation databases generated from UCSC by exposing these as TxDb objects.
This package is devoted to analyzing MeRIP-seq data. Current functionalities include 1. detect transcriptome wide m6A methylation regions 2. detect transcriptome wide differential m6A methylation regions.
Collection of Xenium spatial transcriptomics datasets provided by 10x Genomics, formatted into the Bioconductor classes, the SpatialExperiment or SpatialFeatureExperiment (SFE), to facilitate seamless integration into various applications, including examples, demonstrations, and tutorials. The constructed data objects include gene expression profiles, per-transcript location data, centroid, segmentation boundaries (e.g., cell or nucleus boundaries), and image.
Collection of Visium spatial gene expression datasets by 10X Genomics, formatted into objects of class SpatialExperiment. Data cover various organisms and tissues, and include: single- and multi-section experiments, as well as single sections subjected to both whole transcriptome and targeted panel analysis. Datasets may be used for testing of and as examples in packages, for tutorials and workflow demonstrations, or similar purposes.
This package provides functions to standardise the analysis of Differential Allelic Representation (DAR). DAR compromises the integrity of Differential Expression analysis results as it can bias expression, influencing the classification of genes (or transcripts) as being differentially expressed. DAR analysis results in an easy-to-interpret value between 0 and 1 for each genetic feature of interest, where 0 represents identical allelic representation and 1 represents complete diversity. This metric can be used to identify features prone to false-positive calls in Differential Expression analysis, and can be leveraged with statistical methods to alleviate the impact of such artefacts on RNA-seq data.
This package contains a set of functions to perform large-scale analysis of toxicogenomic data, providing a standardized data structure to hold information relevant to annotation, visualization and statistical analysis of toxicogenomic data.
The arrangement of hypotheses in a hierarchical structure appears in many research fields and often indicates different resolutions at which data can be viewed. This raises the question of which resolution level the signal should best be interpreted on. treeclimbR provides a flexible method to select optimal resolution levels (potentially different levels in different parts of the tree), rather than cutting the tree at an arbitrary level. treeclimbR uses a tuning parameter to generate candidate resolutions and from these selects the optimal one.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was Tomato\_probe\_tab.
Exposes an annotation databases generated from UCSC by exposing these as TxDb objects.
Exposes an annotation databases generated from UCSC by exposing these as TxDb objects.
treekoR is a novel framework that aims to utilise the hierarchical nature of single cell cytometry data to find robust and interpretable associations between cell subsets and patient clinical end points. These associations are aimed to recapitulate the nested proportions prevalent in workflows inovlving manual gating, which are often overlooked in workflows using automatic clustering to identify cell populations. We developed treekoR to: Derive a hierarchical tree structure of cell clusters; quantify a cell types as a proportion relative to all cells in a sample (%total), and, as the proportion relative to a parent population (%parent); perform significance testing using the calculated proportions; and provide an interactive html visualisation to help highlight key results.
This package provides access to RNA-seq data generated by the Tabula Muris Senis project via the Bioconductor project. The data is made available without restrictions by the Chan Zuckerberg Biohub. It is provided here without further processing, collected in the form of SingleCellExperiment objects.
This package provides a package containing an environment representing the Test2.CDF file.
transmogR provides the tools needed to crate a new reference genome or reference transcriptome, using a set of variants. Variants can be any combination of SNPs, Insertions and Deletions. The intended use-case is to enable creation of variant-modified reference transcriptomes for incorporation into transcriptomic pseudo-alignment workflows, such as salmon.