Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Biostatistical and clinical data analysis, including descriptive statistics, exploratory data analysis, sample size and power calculations, statistical inference, and data visualization. Normality tests are implemented following Mishra et al. (2019) <doi:10.4103/aca.ACA_157_18>, omnibus test procedures are based on Blanca et al. (2017) <doi:10.3758/s13428-017-0918-2> and Field et al. (2012, ISBN:9781446200469), while sample size and power calculation methods follow Chow et al. (2017) <doi:10.1201/9781315183084>.
This package provides a Metropolis-coupled Markov chain Monte Carlo sampler, post-processing and parameter estimation functions, and plotting utilities for the generalized graded unfolding model of Roberts, Donoghue, and Laughlin (2000) <doi:10.1177/01466216000241001>.
Facilitates retrieval, transformation and analysis of the data from the Barcode of Life Data Systems (BOLD) database <https://boldsystems.org/>. This package allows both public and private user data to be easily downloaded into the R environment using a variety of inputs such as: IDs (processid, sampleid), BINs, dataset codes, project codes, taxonomy, geography etc. It provides frictionless data conversion into formats compatible with other R-packages and third-party tools, as well as functions for sequence alignment & clustering, biodiversity analysis and spatial mapping.
This package provides a Gibbs sampler algorithm was developed to estimate change points in constant-wise data sequences while performing clustering simultaneously. The algorithm is described in da Cruz, A. C. and de Souza, C. P. E "A Bayesian Approach for Clustering Constant-wise Change-point Data" <doi:10.48550/arXiv.2305.17631>.
Different adjustment methods for batch effects in biomarker data, such as from tissue microarrays. Some methods attempt to retain differences between batches that may be due to between-batch differences in "biological" factors that influence biomarker values.
Primarily created as an easy and understanding way to do basic sequences surrounding the central dogma of molecular biology.
This package provides functions streamlining the data analysis workflow: Outsourcing data import, renaming and type casting to a *.csv. Manipulating imputed datasets and fitting models on them. Summarizing models.
Computation of bootstrap confidence intervals in an almost automatic fashion as described in Efron and Narasimhan (2020, <doi:10.1080/10618600.2020.1714633>).
Using numeric or raster data, this package contains functions to calculate: complete water balance, bioclimatic balance, bioclimatic intensities, reports for individual locations, multi-layered rasters for spatial analysis.
The R-package bayespm implements Bayesian Statistical Process Control and Monitoring (SPC/M) methodology. These methods utilize available prior information and/or historical data, providing efficient online quality monitoring of a process, in terms of identifying moderate/large transient shifts (i.e., outliers) or persistent shifts of medium/small size in the process. These self-starting, sequentially updated tools can also run under complete absence of any prior information. The Predictive Control Charts (PCC) are introduced for the quality monitoring of data from any discrete or continuous distribution that is a member of the regular exponential family. The Predictive Ratio CUSUMs (PRC) are introduced for the Binomial, Poisson and Normal data (a later version of the library will cover all the remaining distributions from the regular exponential family). The PCC targets transient process shifts of typically large size (a.k.a. outliers), while PRC is focused in detecting persistent (structural) shifts that might be of medium or even small size. Apart from monitoring, both PCC and PRC provide the sequentially updated posterior inference for the monitored parameter. Bourazas K., Kiagias D. and Tsiamyrtzis P. (2022) "Predictive Control Charts (PCC): A Bayesian approach in online monitoring of short runs" <doi:10.1080/00224065.2021.1916413>, Bourazas K., Sobas F. and Tsiamyrtzis, P. 2023. "Predictive ratio CUSUM (PRC): A Bayesian approach in online change point detection of short runs" <doi:10.1080/00224065.2022.2161434>, Bourazas K., Sobas F. and Tsiamyrtzis, P. 2023. "Design and properties of the predictive ratio cusum (PRC) control charts" <doi:10.1080/00224065.2022.2161435>.
Implementation of bivariate binomial, geometric, and Poisson distributions based on conditional specifications. The package also includes tools for data generation and goodness-of-fit testing for these three distribution families. For methodological details, see Ghosh, Marques, and Chakraborty (2025) <doi:10.1080/03610926.2024.2315294>, Ghosh, Marques, and Chakraborty (2023) <doi:10.1080/03610918.2021.2004419>, and Ghosh, Marques, and Chakraborty (2021) <doi:10.1080/02664763.2020.1793307>.
The purpose of this package is to fit the three Spatial Econometric Models proposed in Anselin (1988, ISBN:9024737354) in the homoscedastic and the heteroscedatic case. The fit is made through MCMC algorithms and observational working variables approach.
Correlation chart of two set (x and y) of data. Using Quartiles with boxplot style. Visualize the effect of factor.
Buckley-James regression for right-censoring survival data with high-dimensional covariates. Implementations for survival data include boosting with componentwise linear least squares, componentwise smoothing splines, regression trees and MARS. Other high-dimensional tools include penalized regression for survival data. See Wang and Wang (2010) <doi:10.2202/1544-6115.1550>.
This package provides functions for Maximum Likelihood Estimation, Markov Chain Monte Carlo, finding confidence intervals. The implementation is heavily based on the original Fortran source code translated to R.
Temporal Exponential Random Graph Models (TERGM) estimated by maximum pseudolikelihood with bootstrapped confidence intervals or Markov Chain Monte Carlo maximum likelihood. Goodness of fit assessment for ERGMs, TERGMs, and SAOMs. Micro-level interpretation of ERGMs and TERGMs. The methods are described in Leifeld, Cranmer and Desmarais (2018), JStatSoft <doi:10.18637/jss.v083.i06>.
This package provides methods for piecewise smooth regression. A piecewise smooth signal is estimated by applying a bootstrapped test recursively (binary segmentation approach). Each bootstrapped test decides whether the underlying signal is smooth on the currently considered subsegment or contains at least one further change-point.
This package provides a collection of Bayesian networks (discrete, Gaussian, and conditional linear Gaussian) collated from recent academic literature. The bnRep_summary object provides an overview of the Bayesian networks in the repository and the package documentation includes details about the variables in each network. A Shiny app to explore the repository can be launched with bnRep_app() and is available online at <https://manueleleonelli.shinyapps.io/bnRep>. Reference: M. Leonelli (2025) <doi:10.1016/j.neucom.2025.129502>.
This package provides advanced Bayesian methods to estimate abundance and run-timing from temporally-stratified Petersen mark-recapture experiments. Methods include hierarchical modelling of the capture probabilities and spline smoothing of the daily run size. Theory described in Bonner and Schwarz (2011) <doi:10.1111/j.1541-0420.2011.01599.x>.
Allows users to easily visualize data from the BLS (United States of America Bureau of Labor Statistics) <https://www.bls.gov>. Currently unemployment data series U1-U6 are available. Not affiliated with the Bureau of Labor Statistics or United States Government.
Two partially supervised mixture modeling methods: soft-label and belief-based modeling are implemented. For completeness, we equipped the package also with the functionality of unsupervised, semi- and fully supervised mixture modeling. The package can be applied also to selection of the best-fitting from a set of models with different component numbers or constraints on their structures. For detailed introduction see: Przemyslaw Biecek, Ewa Szczurek, Martin Vingron, Jerzy Tiuryn (2012), The R Package bgmm: Mixture Modeling with Uncertain Knowledge, Journal of Statistical Software <doi:10.18637/jss.v047.i03>.
This package implements state-of-the-art algorithms for the Bayesian analysis of Structural Vector Autoregressions (SVARs) identified by sign, zero, and narrative restrictions. The core model is based on a flexible Vector Autoregression with estimated hyper-parameters of the Minnesota prior and the dummy observation priors as in Giannone, Lenza, Primiceri (2015) <doi:10.1162/REST_a_00483>. The sign restrictions are implemented employing the methods proposed by Rubio-Ramà rez, Waggoner & Zha (2010) <doi:10.1111/j.1467-937X.2009.00578.x>, while identification through sign and zero restrictions follows the approach developed by Arias, Rubio-Ramà rez, & Waggoner (2018) <doi:10.3982/ECTA14468>. Furthermore, our tool provides algorithms for identification via sign and narrative restrictions, in line with the methods introduced by Antolà n-Dà az and Rubio-Ramà rez (2018) <doi:10.1257/aer.20161852>. Users can also estimate a model with sign, zero, and narrative restrictions imposed at once. The package facilitates predictive and structural analyses using impulse responses, forecast error variance and historical decompositions, forecasting and conditional forecasting, as well as analyses of structural shocks and fitted values. All this is complemented by colourful plots, user-friendly summary functions, and comprehensive documentation including the vignette by Wang & Woźniak (2024) <doi:10.48550/arXiv.2501.16711>. The bsvarSIGNs package is aligned regarding objects, workflows, and code structure with the R package bsvars by Woźniak (2024) <doi:10.32614/CRAN.package.bsvars>, and they constitute an integrated toolset. It was granted the Di Cook Open-Source Statistical Software Award by the Statistical Society of Australia in 2024.
Fast and accurate calculation of Blaker's binomial and Poisson confidence limits (and some related stuff).
Blocks units into experimental blocks, with one unit per treatment condition, by creating a measure of multivariate distance between all possible pairs of units. Maximum, minimum, or an allowable range of differences between units on one variable can be set. Randomly assign units to treatment conditions. Diagnose potential interference between units assigned to different treatment conditions. Write outputs to .tex and .csv files. For more information on the methods implemented, see Moore (2012) <doi:10.1093/pan/mps025>.