_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/
r-bionero 1.14.0
Propagated dependencies: r-biocparallel@1.40.0 r-complexheatmap@2.22.0 r-dynamictreecut@1.63-1 r-genie3@1.28.0 r-ggdendro@0.2.0 r-ggnetwork@0.5.13 r-ggplot2@3.5.1 r-ggrepel@0.9.6 r-igraph@2.1.1 r-intergraph@2.0-4 r-matrixstats@1.4.1 r-minet@3.64.0 r-netrep@1.2.7 r-patchwork@1.3.0 r-rcolorbrewer@1.1-3 r-reshape2@1.4.4 r-rlang@1.1.4 r-summarizedexperiment@1.36.0 r-sva@3.54.0 r-wgcna@1.73
Channel: guix
Location: gnu/packages/bioconductor.scm (gnu packages bioconductor)
Home page: https://github.com/almeidasilvaf/BioNERO
Licenses: GPL 3
Synopsis: Biological network reconstruction omnibus
Description:

BioNERO aims to integrate all aspects of biological network inference in a single package, including data preprocessing, exploratory analyses, network inference, and analyses for biological interpretations. BioNERO can be used to infer gene coexpression networks (GCNs) and gene regulatory networks (GRNs) from gene expression data. Additionally, it can be used to explore topological properties of protein-protein interaction (PPI) networks. GCN inference relies on the popular WGCNA algorithm. GRN inference is based on the "wisdom of the crowds" principle, which consists in inferring GRNs with multiple algorithms (here, CLR, GENIE3 and ARACNE) and calculating the average rank for each interaction pair. As all steps of network analyses are included in this package, BioNERO makes users avoid having to learn the syntaxes of several packages and how to communicate between them. Finally, users can also identify consensus modules across independent expression sets and calculate intra and interspecies module preservation statistics between different networks.

r-xegabnf 1.0.0.5
Channel: guix-cran
Location: guix-cran/packages/x.scm (guix-cran packages x)
Home page: https://github.com/ageyerschulz/xegaBNF
Licenses: Expat
Synopsis: Compile a Backus-Naur Form Specification into an R Grammar Object
Description:

Translates a BNF (Backus-Naur Form) specification of a context-free language into an R grammar object which consists of the start symbol, the symbol table, the production table, and a short production table. The short production table is non-recursive. The grammar object contains the file name from which it was generated (without a path). In addition, it provides functions to determine the type of a symbol (isTerminal() and isNonterminal()) and functions to access the production table (rules() and derives()). For the BNF specification, see Backus, John et al. (1962) "Revised Report on the Algorithmic Language ALGOL 60". (ALGOL60 standards page <http://www.algol60.org/2standards.htm>, html-edition <https://www.masswerk.at/algol60/report.htm>) A preprocessor for macros which expand to standard BNF is included. The grammar compiler is an extension of the APL2 implementation in Geyer-Schulz, Andreas (1997, ISBN:978-3-7908-0830-X).

r-cftools 1.6.0
Propagated dependencies: r-rcpp@1.0.13-1 r-r-utils@2.12.3 r-genomicranges@1.58.0 r-cftoolsdata@1.4.0 r-bh@1.84.0-0 r-basilisk@1.18.0
Channel: guix-bioc
Location: guix-bioc/packages/c.scm (guix-bioc packages c)
Home page: https://github.com/jasminezhoulab/cfTools
Licenses: FSDG-compatible
Synopsis: Informatics Tools for Cell-Free DNA Study
Description:

The cfTools R package provides methods for cell-free DNA (cfDNA) methylation data analysis to facilitate cfDNA-based studies. Given the methylation sequencing data of a cfDNA sample, for each cancer marker or tissue marker, we deconvolve the tumor-derived or tissue-specific reads from all reads falling in the marker region. Our read-based deconvolution algorithm exploits the pervasiveness of DNA methylation for signal enhancement, therefore can sensitively identify a trace amount of tumor-specific or tissue-specific cfDNA in plasma. cfTools provides functions for (1) cancer detection: sensitively detect tumor-derived cfDNA and estimate the tumor-derived cfDNA fraction (tumor burden); (2) tissue deconvolution: infer the tissue type composition and the cfDNA fraction of multiple tissue types for a plasma cfDNA sample. These functions can serve as foundations for more advanced cfDNA-based studies, including cancer diagnosis and disease monitoring.

r-mratios 1.4.4
Propagated dependencies: r-survpresmooth@1.1-12 r-survival@3.7-0 r-mvtnorm@1.3-2 r-multcomp@1.4-26
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=mratios
Licenses: GPL 2
Synopsis: Ratios of Coefficients in the General Linear Model
Description:

This package performs (simultaneous) inferences for ratios of linear combinations of coefficients in the general linear model, linear mixed model, and for quantiles in a one-way layout. Multiple comparisons and simultaneous confidence interval estimations can be performed for ratios of treatment means in the normal one-way layout with homogeneous and heterogeneous treatment variances, according to Dilba et al. (2007) <https://cran.r-project.org/doc/Rnews/Rnews_2007-1.pdf> and Hasler and Hothorn (2008) <doi:10.1002/bimj.200710466>. Confidence interval estimations for ratios of linear combinations of linear model parameters like in (multiple) slope ratio and parallel line assays can be carried out. Moreover, it is possible to calculate the sample sizes required in comparisons with a control based on relative margins. For the simple two-sample problem, functions for a t-test for ratio-formatted hypotheses and the corresponding confidence interval are provided assuming homogeneous or heterogeneous group variances.

r-tangram 0.8.2
Propagated dependencies: r-stringr@1.5.1 r-stringi@1.8.4 r-r6@2.5.1 r-magrittr@2.0.3 r-knitr@1.49 r-htmltools@0.5.8.1 r-digest@0.6.37 r-base64enc@0.1-3
Channel: guix-cran
Location: guix-cran/packages/t.scm (guix-cran packages t)
Home page: https://github.com/spgarbet/tangram
Licenses: GPL 3
Synopsis: The Grammar of Tables
Description:

This package provides an extensible formula system to quickly and easily create production quality tables. The processing steps are a formula parser, statistical content generation from data as defined by formula, followed by rendering into a table. Each step of the processing is separate and user definable thus creating a set of composable building blocks for highly customizable table generation. A user is not limited by any of the choices of the package creator other than the formula grammar. For example, one could chose to add a different S3 rendering function and output a format not provided in the default package, or possibly one would rather have Gini coefficients for their statistical content in a resulting table. Routines to achieve New England Journal of Medicine style, Lancet style and Hmisc::summaryM() statistics are provided. The package contains rendering for HTML5, Rmarkdown and an indexing format for use in tracing and tracking are provided.

r-saccadr 0.1.3
Propagated dependencies: r-tidyr@1.3.1 r-signal@1.8-1 r-rlang@1.1.4 r-rcpp@1.0.13-1 r-magrittr@2.0.3 r-dplyr@1.1.4 r-cluster@2.1.6
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/alexander-pastukhov/saccadr/
Licenses: GPL 3+
Synopsis: Extract Saccades via an Ensemble of Methods Approach
Description:

This package provides a modular and extendable approach to extract (micro)saccades from gaze samples via an ensemble of methods. Although there is an agreement about a general definition of a saccade, the more specific details are harder to agree upon. Therefore, there are numerous algorithms that extract saccades based on various heuristics, which differ in the assumptions about velocity, acceleration, etc. The package uses three methods (Engbert and Kliegl (2003) <doi:10.1016/S0042-6989(03)00084-1>, Otero-Millan et al. (2014)<doi:10.1167/14.2.18>, and Nyström and Holmqvist (2010) <doi:10.3758/BRM.42.1.188>) to label individual samples and then applies a majority vote approach to identify saccades. The package includes three methods but can be extended via custom functions. It also uses a modular approach to compute velocity and acceleration from noisy samples. Finally, you can obtain methods votes per gaze sample instead of saccades.

r-wordnet 0.1-17
Propagated dependencies: r-rjava@1.0-11
Channel: guix-cran
Location: guix-cran/packages/w.scm (guix-cran packages w)
Home page: https://wordnet.princeton.edu/
Licenses: Expat
Synopsis: WordNet Interface
Description:

An interface to WordNet using the Jawbone Java API to WordNet. WordNet (<https://wordnet.princeton.edu/>) is a large lexical database of English. Nouns, verbs, adjectives and adverbs are grouped into sets of cognitive synonyms (synsets), each expressing a distinct concept. Synsets are interlinked by means of conceptual-semantic and lexical relations. Please note that WordNet(R) is a registered tradename. Princeton University makes WordNet available to research and commercial users free of charge provided the terms of their license (<https://wordnet.princeton.edu/license-and-commercial-use>) are followed, and proper reference is made to the project using an appropriate citation (<https://wordnet.princeton.edu/citing-wordnet>). The WordNet database files need to be made available separately, either via package wordnetDicts from <https://datacube.wu.ac.at>, installing system packages where available, or direct download from <https://wordnetcode.princeton.edu/3.0/WNdb-3.0.tar.gz>.

r-metabma 0.6.9
Propagated dependencies: r-stanheaders@2.32.10 r-rstantools@2.4.0 r-rstan@2.32.6 r-rcppparallel@5.1.9 r-rcppeigen@0.3.4.0.2 r-rcpp@1.0.13-1 r-mvtnorm@1.3-2 r-logspline@2.1.22 r-laplacesdemon@16.1.6 r-coda@0.19-4.1 r-bridgesampling@1.1-2 r-bh@1.84.0-0
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/danheck/metaBMA
Licenses: GPL 3
Synopsis: Bayesian Model Averaging for Random and Fixed Effects Meta-Analysis
Description:

Computes the posterior model probabilities for standard meta-analysis models (null model vs. alternative model assuming either fixed- or random-effects, respectively). These posterior probabilities are used to estimate the overall mean effect size as the weighted average of the mean effect size estimates of the random- and fixed-effect model as proposed by Gronau, Van Erp, Heck, Cesario, Jonas, & Wagenmakers (2017, <doi:10.1080/23743603.2017.1326760>). The user can define a wide range of non-informative or informative priors for the mean effect size and the heterogeneity coefficient. Moreover, using pre-compiled Stan models, meta-analysis with continuous and discrete moderators with Jeffreys-Zellner-Siow (JZS) priors can be fitted and tested. This allows to compute Bayes factors and perform Bayesian model averaging across random- and fixed-effects meta-analysis with and without moderators. For a primer on Bayesian model-averaged meta-analysis, see Gronau, Heck, Berkhout, Haaf, & Wagenmakers (2021, <doi:10.1177/25152459211031256>).

r-chippcr 1.0-2
Propagated dependencies: r-signal@1.8-1 r-shiny@1.8.1 r-robustbase@0.99-4-1 r-rfit@0.27.0 r-quantreg@5.99 r-ptw@1.9-16 r-outliers@0.15 r-mass@7.3-61 r-lmtest@0.9-40
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/PCRuniversum/chipPCR
Licenses: GPL 3
Synopsis: Toolkit of Helper Functions to Pre-Process Amplification Data
Description:

This package provides a collection of functions to pre-process amplification curve data from polymerase chain reaction (PCR) or isothermal amplification reactions. Contains functions to normalize and baseline amplification curves, to detect both the start and end of an amplification reaction, several smoothers (e.g., LOWESS, moving average, cubic splines, Savitzky-Golay), a function to detect false positive amplification reactions and a function to determine the amplification efficiency. Quantification point (Cq) methods include the first (FDM) and second approximate derivative maximum (SDM) methods (calculated by a 5-point-stencil) and the cycle threshold method. Data sets of experimental nucleic acid amplification systems ('VideoScan HCU', capillary convective PCR (ccPCR)) and commercial systems are included. Amplification curves were generated by helicase dependent amplification (HDA), ccPCR or PCR. As detection system intercalating dyes (EvaGreen, SYBR Green) and hydrolysis probes (TaqMan) were used. For more information see: Roediger et al. (2015) <doi:10.1093/bioinformatics/btv205>.

r-mmodely 0.2.5
Propagated dependencies: r-caroline@0.9.9 r-caper@1.0.3 r-ape@5.8
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=mmodely
Licenses: FSDG-compatible
Synopsis: Modeling Multivariate Origins Determinants - Evolutionary Lineages in Ecology
Description:

Perform multivariate modeling of evolved traits, with special attention to understanding the interplay of the multi-factorial determinants of their origins in complex ecological settings (Stephens, 2007 <doi:10.1016/j.tree.2006.12.003>). This software primarily concentrates on phylogenetic regression analysis, enabling implementation of tree transformation averaging and visualization functionality. Functions additionally support information theoretic approaches (Grueber, 2011 <doi:10.1111/j.1420-9101.2010.02210.x>; Garamszegi, 2011 <doi:10.1007/s00265-010-1028-7>) such as model averaging and selection of phylogenetic models. Accessory functions are also implemented for coef standardization (Cade 2015), selection uncertainty, and variable importance (Burnham & Anderson 2000). There are other numerous functions for visualizing confounded variables, plotting phylogenetic trees, as well as reporting and exporting modeling results. Lastly, as challenges to ecology are inherently multifarious, and therefore often multi-dataset, this package features several functions to support the identification, interpolation, merging, and updating of missing data and outdated nomenclature.

r-metrica 2.1.0
Propagated dependencies: r-tidyr@1.3.1 r-rsqlite@2.3.7 r-rlang@1.1.4 r-minerva@1.5.10 r-ggpp@0.5.8-1 r-ggplot2@3.5.1 r-energy@1.7-12 r-dplyr@1.1.4 r-dbi@1.2.3
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://adriancorrendo.github.io/metrica/
Licenses: Expat
Synopsis: Prediction Performance Metrics
Description:

This package provides a compilation of more than 80 functions designed to quantitatively and visually evaluate prediction performance of regression (continuous variables) and classification (categorical variables) of point-forecast models (e.g. APSIM, DSSAT, DNDC, supervised Machine Learning). For regression, it includes functions to generate plots (scatter, tiles, density, & Bland-Altman plot), and to estimate error metrics (e.g. MBE, MAE, RMSE), error decomposition (e.g. lack of accuracy-precision), model efficiency (e.g. NSE, E1, KGE), indices of agreement (e.g. d, RAC), goodness of fit (e.g. r, R2), adjusted correlation coefficients (e.g. CCC, dcorr), symmetric regression coefficients (intercept, slope), and mean absolute scaled error (MASE) for time series predictions. For classification (binomial and multinomial), it offers functions to generate and plot confusion matrices, and to estimate performance metrics such as accuracy, precision, recall, specificity, F-score, Cohen's Kappa, G-mean, and many more. For more details visit the vignettes <https://adriancorrendo.github.io/metrica/>.

r-marsgwr 0.1.0
Propagated dependencies: r-qpdf@1.3.4 r-numbers@0.8-5 r-earth@5.3.4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=MARSGWR
Licenses: GPL 2+
Synopsis: Hybrid Spatial Model for Capturing Spatially Varying Relationships Between Variables in the Data
Description:

It is a hybrid spatial model that combines the strength of two widely used regression models, MARS (Multivariate Adaptive Regression Splines) and GWR (Geographically Weighted Regression) to provide an effective approach for predicting a response variable at unknown locations. The MARS model is used in the first step of the development of a hybrid model to identify the most important predictor variables that assist in predicting the response variable. For method details see, Friedman, J.H. (1991). <DOI:10.1214/aos/1176347963>.The GWR model is then used to predict the response variable at testing locations based on these selected variables that account for spatial variations in the relationships between the variables. This hybrid model can improve the accuracy of the predictions compared to using an individual model alone.This developed hybrid spatial model can be useful particularly in cases where the relationship between the response variable and predictor variables is complex and non-linear, and varies across locations.

r-neojags 0.1.6
Propagated dependencies: r-runjags@2.2.2-5 r-rjags@4-16 r-coda@0.19-4.1
Channel: guix-cran
Location: guix-cran/packages/n.scm (guix-cran packages n)
Home page: https://github.com/madsyair/neojags
Licenses: GPL 2
Synopsis: Neo-Normal Distributions Family for Markov Chain Monte Carlo (MCMC) Models in 'JAGS'
Description:

This package provides a JAGS extension module provides neo-normal distributions family including MSNBurr, MSNBurr-IIa, GMSNBurr, Lunetta Exponential Power, Fernandez-Steel Skew t, Fernandez-Steel Skew Normal, Fernandez-Osiewalski-Steel Skew Exponential Power, Jones Skew Exponential Power. References: Choir, A. S. (2020). "The New Neo-Normal Distributions and Their Properties".Unpublished Dissertation. Denwood, M.J. (2016) <doi:10.18637/jss.v071.i09>. Fernandez, C., Osiewalski, J., & Steel, M. F. (1995) <doi:10.1080/01621459.1995.10476637>. Fernandez, C., & Steel, M. F. (1998) <doi:10.1080/01621459.1998.10474117>. Iriawan, N. (2000). "Computationally Intensive Approaches to Inference in NeoNormal Linear Models".Unpublished Dissertation. Mineo, A., & Ruggieri, M. (2005) <doi:10.18637/jss.v012.i04>. Rigby, R. A., & Stasinopoulos, D. M. (2005) <doi:10.1111/j.1467-9876.2005.00510.x>. Lunetta, G. (1963). "Di una Generalizzazione dello Schema della Curva Normale". Rigby, R. A., Stasinopoulos, M. D., Heller, G. Z., & Bastiani, F. D. (2019) <doi:10.1201/9780429298547>.

r-discauc 1.0.3
Propagated dependencies: r-tibble@3.2.1 r-rlang@1.1.4 r-glue@1.8.0 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/d.scm (guix-cran packages d)
Home page: https://github.com/jefriedel/discAUC
Licenses: GPL 3
Synopsis: Linear and Non-Linear AUC for Discounting Data
Description:

Area under the curve (AUC; Myerson et al., 2001) <doi:10.1901/jeab.2001.76-235> is a popular measure used in discounting research. Although the calculation of AUC is standardized, there are differences in AUC based on some assumptions. For example, Myerson et al. (2001) <doi:10.1901/jeab.2001.76-235> assumed that (with delay discounting data) a researcher would impute an indifference point at zero delay equal to the value of the larger, later outcome. However, this practice is not clearly followed. This imputed zero-delay indifference point plays an important role in log and ordinal versions of AUC. Ordinal and log versions of AUC are described by Borges et al. (2016)<doi:10.1002/jeab.219>. The package can calculate all three versions of AUC [and includes a new version: IHS(AUC)], impute indifference points when x = 0, calculate ordinal AUC in the case of Halton sampling of x-values, and account for probability discounting AUC.

r-logmult 0.7.4
Propagated dependencies: r-qvcalc@1.0.4 r-gnm@1.1-5
Channel: guix-cran
Location: guix-cran/packages/l.scm (guix-cran packages l)
Home page: https://github.com/nalimilan/logmult
Licenses: GPL 2+
Synopsis: Log-Multiplicative Models, Including Association Models
Description:

This package provides functions to fit log-multiplicative models using gnm', with support for convenient printing, plots, and jackknife/bootstrap standard errors. For complex survey data, models can be fitted from design objects from the survey package. Currently supported models include UNIDIFF (Erikson & Goldthorpe, 1992), a.k.a. log-multiplicative layer effect model (Xie, 1992) <doi:10.2307/2096242>, and several association models: Goodman (1979) <doi:10.2307/2286971> row-column association models of the RC(M) and RC(M)-L families with one or several dimensions; two skew-symmetric association models proposed by Yamaguchi (1990) <doi:10.2307/271086> and by van der Heijden & Mooijaart (1995) <doi:10.1177/0049124195024001002> Functions allow computing the intrinsic association coefficient (see Bouchet-Valat (2022) <doi:10.1177/0049124119852389>) and the Altham (1970) index <doi:10.1111/j.2517-6161.1970.tb00816.x>, including via the Bayes shrinkage estimator proposed by Zhou (2015) <doi:10.1177/0081175015570097>; and the RAS/IPF/Deming-Stephan algorithm.

r-premium 3.2.13
Propagated dependencies: r-spdep@1.3-6 r-sf@1.0-19 r-rcppeigen@0.3.4.0.2 r-rcpp@1.0.13-1 r-plotrix@3.8-4 r-ggplot2@3.5.1 r-gamlss-dist@6.1-1 r-data-table@1.16.2 r-cluster@2.1.6 r-bh@1.84.0-0
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://www.silvialiverani.com/software/
Licenses: GPL 2
Synopsis: Dirichlet Process Bayesian Clustering, Profile Regression
Description:

Bayesian clustering using a Dirichlet process mixture model. This model is an alternative to regression models, non-parametrically linking a response vector to covariate data through cluster membership. The package allows Bernoulli, Binomial, Poisson, Normal, survival and categorical response, as well as Normal and discrete covariates. It also allows for fixed effects in the response model, where a spatial CAR (conditional autoregressive) term can be also included. Additionally, predictions may be made for the response, and missing values for the covariates are handled. Several samplers and label switching moves are implemented along with diagnostic tools to assess convergence. A number of R functions for post-processing of the output are also provided. In addition to fitting mixtures, it may additionally be of interest to determine which covariates actively drive the mixture components. This is implemented in the package as variable selection. The main reference for the package is Liverani, Hastie, Azizi, Papathomas and Richardson (2015) <doi:10.18637/jss.v064.i07>.

r-ssplots 0.1.2
Propagated dependencies: r-zoo@1.8-12 r-reshape2@1.4.4 r-ggplot2@3.5.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SSplots
Licenses: GPL 2+
Synopsis: Stock Status Plots (SSPs)
Description:

Pauly et al. (2008) <http://legacy.seaaroundus.s3.amazonaws.com/doc/Researcher+Publications/dpauly/PDF/2008/Books%26Chapters/FisheriesInLargeMarineEcosystems.pdf> created (and coined the name) Stock Status Plots for a UNEP compendium on Large Marine Ecosystems(LMEs, Sherman and Hempel (2009)<https://marineinfo.org/imis?module=ref&refid=142061&printversion=1&dropIMIStitle=1>). Stock status plots are bivariate graphs summarizing the status (e.g., developing, fully exploited, overexploited, etc.), through time, of the multispecies fisheries of a fished area or ecosystem. This package contains three functions to generate stock status plots viz., SSplots_pauly() (as per the criteria proposed by Pauly et al.,2008), SSplots_kleisner() (as per the criteria proposed by Kleisner and Pauly (2011) <http://www.ecomarres.com/downloads/regional.pdf> and Kleisner et al. (2013) <doi:10.1111/j.1467-2979.2012.00469.x>)and SSplots_EPI() (as per the criteria proposed by Jayasankar et al.,2021 <https://eprints.cmfri.org.in/11364/>).

r-hdbayes 0.1.1
Channel: guix-cran
Location: guix-cran/packages/h.scm (guix-cran packages h)
Home page: https://github.com/ethan-alt/hdbayes
Licenses: Expat
Synopsis: Bayesian Analysis of Generalized Linear Models with Historical Data
Description:

User-friendly functions for leveraging (multiple) historical data set(s) for generalized linear models. The package contains functions for sampling from the posterior distribution of a generalized linear model using the prior induced by the Bayesian hierarchical model, power prior by Ibrahim and Chen (2000) <doi:10.1214/ss/1009212673>, normalized power prior by Duan et al. (2006) <doi:10.1002/env.752>, normalized asymptotic power prior by Ibrahim et al. (2015) <doi:10.1002/sim.6728>, commensurate prior by Hobbs et al. (2011) <doi:10.1111/j.1541-0420.2011.01564.x>, robust meta-analytic-predictive prior by Schmidli et al. (2014) <doi:10.1111/biom.12242>, the latent exchangeability prior by Alt et al. (2023) <doi:10.48550/arXiv.2303.05223>, and a normal (or half-normal) prior. Functions for computing the marginal log-likelihood under each of the implemented priors are also included. The package compiles all the CmdStan models once during installation using the instantiate package.

r-ungroup 1.4.4
Propagated dependencies: r-rdpack@2.6.1 r-rcppeigen@0.3.4.0.2 r-rcpp@1.0.13-1 r-pbapply@1.7-2 r-matrix@1.7-1
Channel: guix-cran
Location: guix-cran/packages/u.scm (guix-cran packages u)
Home page: https://github.com/mpascariu/ungroup
Licenses: Expat
Synopsis: Penalized Composite Link Model for Efficient Estimation of Smooth Distributions from Coarsely Binned Data
Description:

Versatile method for ungrouping histograms (binned count data) assuming that counts are Poisson distributed and that the underlying sequence on a fine grid to be estimated is smooth. The method is based on the composite link model and estimation is achieved by maximizing a penalized likelihood. Smooth detailed sequences of counts and rates are so estimated from the binned counts. Ungrouping binned data can be desirable for many reasons: Bins can be too coarse to allow for accurate analysis; comparisons can be hindered when different grouping approaches are used in different histograms; and the last interval is often wide and open-ended and, thus, covers a lot of information in the tail area. Age-at-death distributions grouped in age classes and abridged life tables are examples of binned data. Because of modest assumptions, the approach is suitable for many demographic and epidemiological applications. For a detailed description of the method and applications see Rizzi et al. (2015) <doi:10.1093/aje/kwv020>.

r-matrisk 0.1.0
Propagated dependencies: r-sn@2.1.1 r-quantreg@5.99 r-plot3d@1.4.1 r-dfoptim@2023.1.0
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://cran.r-project.org/package=matrisk
Licenses: GPL 3
Synopsis: Macroeconomic-at-Risk
Description:

The Macroeconomics-at-Risk (MaR) approach is based on a two-step semi-parametric estimation procedure that allows to forecast the full conditional distribution of an economic variable at a given horizon, as a function of a set of factors. These density forecasts are then be used to produce coherent forecasts for any downside risk measure, e.g., value-at-risk, expected shortfall, downside entropy. Initially introduced by Adrian et al. (2019) <doi:10.1257/aer.20161923> to reveal the vulnerability of economic growth to financial conditions, the MaR approach is currently extensively used by international financial institutions to provide Value-at-Risk (VaR) type forecasts for GDP growth (Growth-at-Risk) or inflation (Inflation-at-Risk). This package provides methods for estimating these models. Datasets for the US and the Eurozone are available to allow testing of the Adrian et al (2019) model. This package constitutes a useful toolbox (data and functions) for private practitioners, scholars as well as policymakers.

r-cellkey 1.0.2
Propagated dependencies: r-yaml@2.3.10 r-sdctable@0.32.7 r-sdchierarchies@0.21.0 r-rlang@1.1.4 r-ptable@1.0.0 r-digest@0.6.37 r-data-table@1.16.2 r-cli@3.6.3
Channel: guix-cran
Location: guix-cran/packages/c.scm (guix-cran packages c)
Home page: https://github.com/sdcTools/cellKey
Licenses: GPL 2
Synopsis: Consistent Perturbation of Statistical Frequency- And Magnitude Tables
Description:

Data from statistical agencies and other institutions often need to be protected before they can be published. This package can be used to perturb statistical tables in a consistent way. The main idea is to add - at the micro data level - a record key for each unit. Based on these keys, for any cell in a statistical table a cell key is computed as a function on the record keys contributing to a specific cell. Values that are added to the cell in order to perturb it are derived from a lookup-table that maps values of cell keys to specific perturbation values. The theoretical basis for the methods implemented can be found in Thompson, Broadfoot and Elazar (2013) <https://unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2013/Topic_1_ABS.pdf> which was extended and enhanced by Giessing and Tent (2019) <https://unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2019/mtg1/SDC2019_S2_Germany_Giessing_Tent_AD.pdf>.

r-mildsvm 0.4.0
Propagated dependencies: r-tidyr@1.3.1 r-tibble@3.2.1 r-rlang@1.1.4 r-purrr@1.0.2 r-proc@1.18.5 r-pillar@1.9.0 r-mvtnorm@1.3-2 r-magrittr@2.0.3 r-kernlab@0.9-33 r-e1071@1.7-16 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/m.scm (guix-cran packages m)
Home page: https://github.com/skent259/mildsvm
Licenses: Expat
Synopsis: Multiple-Instance Learning with Support Vector Machines
Description:

Weakly supervised (WS), multiple instance (MI) data lives in numerous interesting applications such as drug discovery, object detection, and tumor prediction on whole slide images. The mildsvm package provides an easy way to learn from this data by training Support Vector Machine (SVM)-based classifiers. It also contains helpful functions for building and printing multiple instance data frames. The core methods from mildsvm come from the following references: Kent and Yu (2022) <arXiv:2206.14704>; Xiao, Liu, and Hao (2018) <doi:10.1109/TNNLS.2017.2766164>; Muandet et al. (2012) <https://proceedings.neurips.cc/paper/2012/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper.pdf>; Chu and Keerthi (2007) <doi:10.1162/neco.2007.19.3.792>; and Andrews et al. (2003) <https://papers.nips.cc/paper/2232-support-vector-machines-for-multiple-instance-learning.pdf>. Many functions use the Gurobi optimization back-end to improve the optimization problem speed; the gurobi R package and associated software can be downloaded from <https://www.gurobi.com> after obtaining a license.

r-ppclust 1.1.0.1
Propagated dependencies: r-mass@7.3-61 r-inaparc@1.2.0
Channel: guix-cran
Location: guix-cran/packages/p.scm (guix-cran packages p)
Home page: https://cran.r-project.org/package=ppclust
Licenses: GPL 2+
Synopsis: Probabilistic and Possibilistic Cluster Analysis
Description:

Partitioning clustering divides the objects in a data set into non-overlapping subsets or clusters by using the prototype-based probabilistic and possibilistic clustering algorithms. This package covers a set of the functions for Fuzzy C-Means (Bezdek, 1974) <doi:10.1080/01969727308546047>, Possibilistic C-Means (Krishnapuram & Keller, 1993) <doi:10.1109/91.227387>, Possibilistic Fuzzy C-Means (Pal et al, 2005) <doi:10.1109/TFUZZ.2004.840099>, Possibilistic Clustering Algorithm (Yang et al, 2006) <doi:10.1016/j.patcog.2005.07.005>, Possibilistic C-Means with Repulsion (Wachs et al, 2006) <doi:10.1007/3-540-31662-0_6> and the other variants of hard and soft clustering algorithms. The cluster prototypes and membership matrices required by these partitioning algorithms are initialized with different initialization techniques that are available in the package inaparc'. As the distance metrics, not only the Euclidean distance but also a set of the commonly used distance metrics are available to use with some of the algorithms in the package.

r-knowseq 1.20.0
Propagated dependencies: r-xml@3.99-0.17 r-sva@3.54.0 r-stringr@1.5.1 r-rmarkdown@2.29 r-rlist@0.4.6.2 r-reshape2@1.4.4 r-randomforest@4.7-1.2 r-r-utils@2.12.3 r-praznik@11.0.0 r-limma@3.62.1 r-kernlab@0.9-33 r-jsonlite@1.8.9 r-httr@1.4.7 r-hmisc@5.2-0 r-gridextra@2.3 r-ggplot2@3.5.1 r-edger@4.4.0 r-e1071@1.7-16 r-cqn@1.52.0 r-caret@6.0-94
Channel: guix-bioc
Location: guix-bioc/packages/k.scm (guix-bioc packages k)
Home page: https://bioconductor.org/packages/KnowSeq
Licenses: FSDG-compatible
Synopsis: KnowSeq R/Bioc package: The Smart Transcriptomic Pipeline
Description:

KnowSeq proposes a novel methodology that comprises the most relevant steps in the Transcriptomic gene expression analysis. KnowSeq expects to serve as an integrative tool that allows to process and extract relevant biomarkers, as well as to assess them through a Machine Learning approaches. Finally, the last objective of KnowSeq is the biological knowledge extraction from the biomarkers (Gene Ontology enrichment, Pathway listing and Visualization and Evidences related to the addressed disease). Although the package allows analyzing all the data manually, the main strenght of KnowSeq is the possibilty of carrying out an automatic and intelligent HTML report that collect all the involved steps in one document. It is important to highligh that the pipeline is totally modular and flexible, hence it can be started from whichever of the different steps. KnowSeq expects to serve as a novel tool to help to the experts in the field to acquire robust knowledge and conclusions for the data and diseases to study.

Page: 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511
Total results: 36249