Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions to construct efficient block designs for 3-level factorial experiments in block size 3. The designs ensure the estimation of all main effects and two-factor interactions in minimum number of replications. For more details, see Dey and Mukerjee (2012) <doi:10.1016/j.spl.2012.06.014> and Dash, S., Parsad, R. and Gupta, V.K. (2013) <doi:10.1007/s40003-013-0059-5>.
This package provides methods for mediation analysis with missing data and non-normal data are implemented. For missing data, four methods are available: Listwise deletion, Pairwise deletion, Multiple imputation, and Two Stage Maximum Likelihood algorithm. For MI and TS-ML, auxiliary variables can be included to handle missing data. For handling non-normal data, bootstrap and two-stage robust methods can be used. Technical details of the methods can be found in Zhang and Wang (2013, <doi:10.1007/s11336-012-9301-5>), Zhang (2014, <doi:10.3758/s13428-013-0424-0>), and Yuan and Zhang (2012, <doi:10.1007/s11336-012-9282-4>).
Power calculations are a critical component of any research study to determine the minimum sample size necessary to detect differences between multiple groups. Researchers often work with data taking the form of proportions that can be modeled with a beta distribution. Here we present an R package, BetaPASS', that perform power and sample size calculations for data following a beta distribution with comparative nonparametric output. This package allows flexibility with multiple options for link functions to fit the data and graphing functionality for visual comparisons.
Allows the user to manage easily R packages removal and installation. It offers many functions to display installed packages according to specific dates and removes them if needed. The user is always prompted when running the removal functions in order to confirm the required action. It also provides functions that will install Github starred R packages whether available on CRAN or not.
Provide a sparse matrix format with data stored on disk, to be used in both R and C++. This is intended for more efficient use of sparse data in C++ and also when parallelizing, since data on disk does not need copying. Only a limited number of features will be implemented. For now, conversion can be performed from a dgCMatrix or a dsCMatrix from R package Matrix'. A new compact format is also now available.
An implementation of the bridge distribution with logit-link in R. In Wang and Louis (2003) <DOI:10.1093/biomet/90.4.765>, such a univariate bridge distribution was derived as the distribution of the random intercept that bridged a marginal logistic regression and a conditional logistic regression. The conditional and marginal regression coefficients are a scalar multiple of each other. Such is not the case if the random intercept distribution was Gaussian.
BAYesian inference for MEDical designs in R. Functions for the computation of Bayes factors for common biomedical research designs. Implemented are functions to test the equivalence (equiv_bf), non-inferiority (infer_bf), and superiority (super_bf) of an experimental group compared to a control group on a continuous outcome measure. Bayes factors for these three tests can be computed based on raw data (x, y) or summary statistics (n_x, n_y, mean_x, mean_y, sd_x, sd_y [or ci_margin and ci_level]).
Handy frameworks, such as error handling and log generation, for batch scripts. Use case: in scripts running in remote servers, set error handling mechanism for downloading and uploading and record operation log.
The kernelSmoothing() function allows you to square and smooth geolocated data. It calculates a classical kernel smoothing (conservative) or a geographically weighted median. There are four major call modes of the function. The first call mode is kernelSmoothing(obs, epsg, cellsize, bandwidth) for a classical kernel smoothing and automatic grid. The second call mode is kernelSmoothing(obs, epsg, cellsize, bandwidth, quantiles) for a geographically weighted median and automatic grid. The third call mode is kernelSmoothing(obs, epsg, cellsize, bandwidth, centroids) for a classical kernel smoothing and user grid. The fourth call mode is kernelSmoothing(obs, epsg, cellsize, bandwidth, quantiles, centroids) for a geographically weighted median and user grid. Geographically weighted summary statistics : a framework for localised exploratory data analysis, C.Brunsdon & al., in Computers, Environment and Urban Systems C.Brunsdon & al. (2002) <doi:10.1016/S0198-9715(01)00009-6>, Statistical Analysis of Spatial and Spatio-Temporal Point Patterns, Third Edition, Diggle, pp. 83-86, (2003) <doi:10.1080/13658816.2014.937718>.
The Bayesian Federated Inference ('BFI') method combines inference results obtained from local data sets in the separate centers. In this version of the package, the BFI methodology is programmed for linear, logistic and survival regression models. For GLMs, see Jonker, Pazira and Coolen (2024) <doi:10.1002/sim.10072>; for survival models, see Pazira, Massa, Weijers, Coolen and Jonker (2025) <doi:10.48550/arXiv.2404.17464>; and for heterogeneous populations, see Jonker, Pazira and Coolen (2025) <doi:10.1017/rsm.2025.6>.
Bayesian networks provide an intuitive framework for probabilistic reasoning and its graphical nature can be interpreted quite clearly. Graph based methods of machine learning are becoming more popular because they offer a richer model of knowledge that can be understood by a human in a graphical format. The bnviewer is an R Package that allows the interactive visualization of Bayesian Networks. The aim of this package is to improve the Bayesian Networks visualization over the basic and static views offered by existing packages.
The Biomarker Optimal Segmentation System R package, bossR', is designed for precision medicine, helping to identify individual traits using biomarkers. It focuses on determining the most effective cutoff value for a continuous biomarker, which is crucial for categorizing patients into two groups with distinctly different clinical outcomes. The package simultaneously finds the optimal cutoff from given candidate values and tests its significance. Simulation studies demonstrate that bossR offers statistical power and false positive control non-inferior to the permutation approach (considered the gold standard in this field), while being hundreds of times faster.
This package implements methods for building and analyzing models based on panel data as described in the paper by Moral-Benito (2013, <doi:10.1080/07350015.2013.818003>). The package provides functions to estimate dynamic panel data models and analyze the results of the estimation.
This package provides tools for 3D imaging, mostly for biology/microscopy. Read and write TIFF stacks. Functions for segmentation, filtering and analyzing 3D point patterns.
This package provides tools to calibrate, validate, and make predictions with the General Unified Threshold model of Survival adapted for Bee species. The model is presented in the publication from Baas, J., Goussen, B., Miles, M., Preuss, T.G., Roessing, I. (2022) <doi:10.1002/etc.5423> and Baas, J., Goussen, B., Taenzler, V., Roeben, V., Miles, M., Preuss, T.G., van den Berg, S., Roessink, I. (2024) <doi:10.1002/etc.5871>, and is based on the GUTS framework Jager, T., Albert, C., Preuss, T.G. and Ashauer, R. (2011) <doi:10.1021/es103092a>. The authors are grateful to Bayer A.G. for its financial support.
This package provides functions to compute the joint probability mass function (pmf), cumulative distribution function (cdf), and survival function (sf) of the Basu-Dhar bivariate geometric distribution. Additional functionalities include the calculation of the correlation coefficient, covariance, and cross-factorial moments, as well as the generation of random variates. The package also implements parameter estimation based on the method of moments.
Fits finite mixture models of univariate Gaussian distributions using JAGS within a Bayesian framework.
An interactive document on the topic of classification tree analysis using rmarkdown and shiny packages. Runtime examples are provided in the package function as well as at <https://kartikeyab.shinyapps.io/CTShiny/>.
The c060 package provides additional functions to perform stability selection, model validation and parameter tuning for glmnet models.
Flexible framework for coalescent analyses in R. It includes a main function running the MCMC algorithm, auxiliary functions for tree rearrangement, and some functions to compute population genetic parameters. Extended description can be found in Paradis (2020) <doi:10.1201/9780429466700>. For details on the MCMC algorithm, see Kuhner et al. (1995) <doi:10.1093/genetics/140.4.1421> and Drummond et al. (2002) <doi:10.1093/genetics/161.3.1307>.
Computes community climate statistics for volume and mismatch using species climate niches either unscaled or scaled relative to a regional species pool. These statistics can be used to describe biogeographic patterns and infer community assembly processes. Includes a vignette outlining usage.
There are several non-functional-form-based interaction tests for testing interaction in unreplicated two-way layouts. However, no single test can detect all patterns of possible interaction and the tests are sensitive to a particular pattern of interaction. This package combines six non-functional-form-based interaction tests for testing additivity. These six tests were proposed by Boik (1993) <doi:10.1080/02664769300000004>, Piepho (1994), Kharrati-Kopaei and Sadooghi-Alvandi (2007) <doi:10.1080/03610920701386851>, Franck et al. (2013) <doi:10.1016/j.csda.2013.05.002>, Malik et al. (2016) <doi:10.1080/03610918.2013.870196> and Kharrati-Kopaei and Miller (2016) <doi:10.1080/00949655.2015.1057821>. The p-values of these six tests are combined by Bonferroni, Sidak, Jacobi polynomial expansion, and the Gaussian copula methods to provide researchers with a testing approach which leverages many existing methods to detect disparate forms of non-additivity. This package is based on the following published paper: Shenavari and Kharrati-Kopaei (2018) "A Method for Testing Additivity in Unreplicated Two-Way Layouts Based on Combining Multiple Interaction Tests". In addition, several sentences in help files or descriptions were copied from that paper.
This package provides functions to access data from public RESTful APIs including Nager.Date', World Bank API', and REST Countries API', retrieving real-time or historical data related to China, such as holidays, economic indicators, and international demographic and geopolitical indicators. Additionally, the package includes one of the largest curated collections of open datasets focused on China and Hong Kong, covering topics such as air quality, demographics, input-output tables, epidemiology, political structure, names, and social indicators. The package supports reproducible research and teaching by integrating reliable international APIs and structured datasets from public, academic, and government sources. For more information on the APIs, see: Nager.Date <https://date.nager.at/Api>, World Bank API <https://datahelpdesk.worldbank.org/knowledgebase/articles/889392>, and REST Countries API <https://restcountries.com/>.
This package implements the uniform scaled beta distribution and the continuous convolution kernel density estimator.