Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a collection of helper functions and htmlwidgets to help publishers curate content collections on Posit Connect'. The components, Card, Grid, Table, Search, and Filter can be used to produce a showcase page or gallery contained within a static or interactive R Markdown page.
Supporting the use of the Canadian Community Health Survey (CCHS) by transforming variables from each cycle into harmonized, consistent versions that span survey cycles (currently, 2001 to 2018). CCHS data used in this library is accessed and adapted in accordance to the Statistics Canada Open Licence Agreement. This package uses rec_with_table(), which was developed from sjmisc rec(). Lüdecke D (2018). "sjmisc: Data and Variable Transformation Functions". Journal of Open Source Software, 3(26), 754. <doi:10.21105/joss.00754>.
Simulates time-to-event data with type I right censoring using two methods: the inverse CDF method and our proposed memoryless method. The latter method takes advantage of the memoryless property of survival and simulates a separate distribution between change-points. We include two parametric distributions: exponential and Weibull. Inverse CDF method draws on the work of Rainer Walke (2010), <https://www.demogr.mpg.de/papers/technicalreports/tr-2010-003.pdf>.
Analyzes data from a Conconi et al. (1996) <doi:10.1055/s-2007-972887> treadmill fitness test where speed is augmented by a constant amount every set number of seconds to estimate the anaerobic (lactate) threshold speed and heart rate. It reads a TCX file, allows optional removal observations from before and after the actual test, fits a change-point linear model where the change-point is the estimate of the lactate threshold, and plots the data points and fit model. Details of administering the fitness test are provided in the package vignette. Functions work by default for Garmin Connect TCX exports but may require additional data preparation for heart rate, time, and speed data from other sources.
Calculating the fractal dimension of a coastline using the boxes and dividers methods.
Produce forest plots to visualize covariate effects using either the command line or an interactive Shiny application.
This package provides methods and tools for performing multistep-ahead time series forecasting using conformal prediction methods including classical conformal prediction, adaptive conformal prediction, conformal PID (Proportional-Integral-Derivative) control, and autocorrelated multistep-ahead conformal prediction. The methods were described by Wang and Hyndman (2024) <doi:10.48550/arXiv.2410.13115>.
Calculates population attributable fraction causal effects. The causalPAF package contains a suite of functions for causal analysis calculations of population attributable fractions (PAF) given a causal diagram which apply both: Pathway-specific population attributable fractions (PS-PAFs) Oâ Connell and Ferguson (2022) <doi:10.1093/ije/dyac079> and Sequential population attributable fractions Ferguson, Oâ Connell, and Oâ Donnell (2020) <doi:10.1186/s13690-020-00442-x>. Results are presentable in both table and plot format.
This package contains generic functions for performing cross validation and for computing diagnostic errors.
This package provides a flexible tool for calculating carbon-equivalent emissions. Mostly using data from the UK Government's Greenhouse Gas Conversion Factors report <https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2024>, it facilitates transparent emissions calculations for various sectors, including travel, accommodation, and clinical activities. The package is designed for easy integration into R workflows, with additional support for shiny applications and community-driven extensions.
Identification and network inference of genetic loci associated with correlation changes in quantitative traits (called correlated trait loci, CTLs). Arends et al. (2016) <doi:10.21105/joss.00087>.
The nonparametric methods for estimating copula entropy, transfer entropy, and the statistics for multivariate normality test and two-sample test are implemented. The methods for estimating transfer entropy and the statistics for multivariate normality test and two-sample test are based on the method for estimating copula entropy. The method for change point detection with copula entropy based two-sample test is also implemented. Please refer to Ma and Sun (2011) <doi:10.1016/S1007-0214(11)70008-6>, Ma (2019) <doi:10.48550/arXiv.1910.04375>, Ma (2022) <doi:10.48550/arXiv.2206.05956>, Ma (2023) <doi:10.48550/arXiv.2307.07247>, and Ma (2024) <doi:10.48550/arXiv.2403.07892> for more information.
This package contains functions which can be used to calculate Pesticide Risk Metric values in aquatic environments from concentrations of multiple pesticides with known species sensitive distributions (SSDs). Pesticides provided by this package have all be validated however if the user has their own pesticides with SSD values they can append them to the pesticide_info table to include them in estimates.
This package provides a generic, easy-to-use and intuitive pharmacokinetic/pharmacodynamic (PK/PD) simulation platform based on R packages rxode2 and mrgsolve'. CAMPSIS provides an abstraction layer over the underlying processes of writing a PK/PD model, assembling a custom dataset and running a simulation. CAMPSIS has a strong dependency to the R package campsismod', which allows to read/write a model from/to files and adapt it further on the fly in the R environment. Package campsis allows the user to assemble a dataset in an intuitive manner. Once the userâ s dataset is ready, the package is in charge of preparing the simulation, calling rxode2 or mrgsolve (at the user's choice) and returning the results, for the given model, dataset and desired simulation settings.
This package provides tools for extracting occurrences, assessing potential driving factors, predicting occurrences, and quantifying impacts of compound events in hydrology and climatology. Please see Hao Zengchao et al. (2019) <doi:10.1088/1748-9326/ab4df5>.
Simulating bivariate survival data from copula models. Estimation of the association parameter in copula models. Two different ways to estimate the association parameter in copula models are implemented. A goodness-of-fit test for a given copula model is implemented. See Emura, Lin and Wang (2010) <doi:10.1016/j.csda.2010.03.013> for details.
This package provides a tidied subset of the US College Scorecard dataset, containing institutional characteristics, enrollment, student aid, costs, and student outcomes at institutions of higher education in the United States.
Helpful functions for the cleaning and manipulation of surveillance data, especially with regards to the creation and validation of panel data from individual level surveillance data.
Fast categorization of items based on external code data identified by regular expressions. A typical use case considers patient with medically coded data, such as codes from the International Classification of Diseases ('ICD') or the Anatomic Therapeutic Chemical ('ATC') classification system. Functions of the package relies on a triad of objects: (1) case data with unit id:s and possible dates of interest; (2) external code data for corresponding units in (1) and with optional dates of interest and; (3) a classification scheme ('classcodes object) with regular expressions to identify and categorize relevant codes from (2). It is easy to introduce new classification schemes ('classcodes objects) or to use default schemes included in the package. Use cases includes patient categorization based on comorbidity indices such as Charlson', Elixhauser', RxRisk V', or the comorbidity-polypharmacy score (CPS), as well as adverse events after hip and knee replacement surgery.
Convex Clustering methods, including K-means algorithm, On-line Update algorithm (Hard Competitive Learning) and Neural Gas algorithm (Soft Competitive Learning), and calculation of several indexes for finding the number of clusters in a data set.
Estimation of optimal portfolio weights as combination of simple portfolio strategies, like the tangency, global minimum variance (GMV) or naive (1/N) portfolio. It is based on a utility maximizing 8-fund rule. Popular special cases like the Kan-Zhou(2007) 2-fund and 3-fund rule or the Tu-Zhou(2011) estimator are nested.
After using this, a publication-ready correlation table with p-values indicated will be created. The input can be a full data frame; any string and Boolean terms will be dropped as part of functionality. Correlations and p-values are calculated using the Hmisc framework. Output of the correlation_matrix() function is a table of strings; this gets saved out to a .csv2 with the save_correlation_matrix() function for easy insertion into a paper. For more details about the process, consult <https://paulvanderlaken.com/2020/07/28/publication-ready-correlation-matrix-significance-r/>.
Implementation of Hurst exponent estimators based on complex-valued lifting wavelet energy from Knight, M. I and Nunes, M. A. (2018) <doi:10.1007/s11222-018-9820-8>.
The reliability of assessment tools is a crucial aspect of monitoring student performance in various educational settings. It ensures that the assessment outcomes accurately reflect a student's true level of performance. However, when assessments are combined, determining composite reliability can be challenging, especially for naturalistic and unbalanced datasets in nested design as is often the case for Workplace-Based Assessments. This package is designed to estimate composite reliability in nested designs using multivariate generalizability theory and enhance the analysis of assessment data. The package allows for the inclusion of weight per assessment type and produces extensive G- and D-study results with graphical interpretations, and options to find the set of weights that maximizes the composite reliability or minimizes the standard error of measurement (SEM).