Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Beta version of Bayesian Inference (BI) using python and BI. It aims to unify the modeling experience by providing an intuitive model-building syntax together with the flexibility of low-level abstraction coding. It also includes pre-built functions for high-level abstraction and supports hardware-accelerated computation for improved scalability, including parallelization, vectorization, and execution on CPU, GPU, or TPU.
Computation of key characteristics and plots for blinded sample size recalculation. Continuous as well as binary endpoints are supported in superiority and non-inferiority trials. See Baumann, Pilz, Kieser (2022) <doi:10.32614/RJ-2022-001> for a detailed description. The implemented methods include the approaches by Lu, K. (2019) <doi:10.1002/pst.1737>, Kieser, M. and Friede, T. (2000) <doi:10.1002/(SICI)1097-0258(20000415)19:7%3C901::AID-SIM405%3E3.0.CO;2-L>, Friede, T. and Kieser, M. (2004) <doi:10.1002/pst.140>, Friede, T., Mitchell, C., Mueller-Veltern, G. (2007) <doi:10.1002/bimj.200610373>, and Friede, T. and Kieser, M. (2011) <doi:10.3414/ME09-01-0063>.
Perform seasonal adjustment and forecasting of weekly data. The package provides a user-friendly interface for computing seasonally adjusted estimates and forecasts of weekly time series and includes functions for the construction of country-specific prior adjustment variables, as well as diagnostic tools to assess the quality of the adjustments. The methodology is described in more detail in Ginker (2024) <doi:10.13140/RG.2.2.12221.44000>.
The goal of this method is to identify associations between bacteria and an environmental variable in 16S or other compositional data. The environmental variable is any variable which is measure for each microbiome sample, for example, a butyrate measurement paired with every sample in the data. Microbiome data is compositional, meaning that the total abundance of each sample sums to 1, and this introduces severe statistical distortions. This method takes a Bayesian approach to correcting for these statistical distortions, in which the total abundance is treated as an unknown variable. This package runs the python implementation using reticulate.
Search and download data from the Swiss Federal Statistical Office (BFS) APIs <https://www.bfs.admin.ch/>.
Fits linear or generalized linear regression models using Bayesian global-local shrinkage prior hierarchies as described in Polson and Scott (2010) <doi:10.1093/acprof:oso/9780199694587.003.0017>. Provides an efficient implementation of ridge, lasso, horseshoe and horseshoe+ regression with logistic, Gaussian, Laplace, Student-t, Poisson or geometric distributed targets using the algorithms summarized in Makalic and Schmidt (2016) <doi:10.48550/arXiv.1611.06649>.
Interface with the Brickset API <https://brickset.com/article/52664/api-version-3-documentation> for getting data about LEGO sets. Data sets that can be used for teaching and learning without the need of a Brickset account and API key are also included. Includes all LEGO since through the end of 2025.
This package provides tools to generate unique identifier codes and printable barcoded labels for the management of biological samples. The creation of unique ID codes and printable PDF files can be initiated by standard commands, user prompts, or through a GUI addin for R Studio. Biologically informative codes can be included for hierarchically structured sampling designs.
Creating, rendering and writing BPMN diagrams <https://www.bpmn.org/>. Functionalities can be used to visualize and export BPMN diagrams created using the pm4py and bupaRminer packages. Part of the bupaR ecosystem.
This package provides a system of functions and data aiming to apply quantitative analyses to forest ecology, silviculture and decision-making. Besides, the package helps to carry out data management, exploratory analysis, and model assessment.
This package provides statistical tools for Bayesian estimation of mixture distributions, mainly a mixture of Gamma, Normal, and t-distributions. The package is implemented based on the Bayesian literature for the finite mixture of distributions, including Mohammadi and et al. (2013) <doi:10.1007/s00180-012-0323-3> and Mohammadi and Salehi-Rad (2012) <doi:10.1080/03610918.2011.588358>.
Use BirdNET', a state-of-the-art deep learning classifier, to automatically identify (bird) sounds. Analyze bioacoustic datasets without any computer science background using a pre-trained model or a custom trained classifier. Predict bird species occurrence based on location and week of the year. Kahl, S., Wood, C. M., Eibl, M., & Klinck, H. (2021) <doi:10.1016/j.ecoinf.2021.101236>.
Extract data from Birdscan MR1 SQL vertical-looking radar databases, filter, and process them to Migration Traffic Rates (#objects per hour and km) or density (#objects per km3) of, for example birds, and insects. Object classifications in the Birdscan MR1 databases are based on the dataset of Haest et al. (2021) <doi:10.5281/zenodo.5734960>). Migration Traffic Rates and densities can be calculated separately for different height bins (with a height resolution of choice) as well as over time periods of choice (e.g., 1/2 hour, 1 hour, 1 day, day/night, the full time period of observation, and anything in between). Two plotting functions are also included to explore the data in the SQL databases and the resulting Migration Traffic Rate results. For details on the Migration Traffic Rate calculation procedures, see Schmid et al. (2019) <doi:10.1111/ecog.04025>.
This package implements the Bayesian Synthetic Control method for causal inference in comparative case studies. This package provides tools for estimating treatment effects in settings with a single treated unit and multiple control units, allowing for uncertainty quantification and flexible modeling of time-varying effects. The methodology is based on the paper by Vives and Martinez (2022) <doi:10.48550/arXiv.2206.01779>.
Evaluate, fit, and analyze Hill dose response models (Goutelle et al., 2008 <doi:10.1111/j.1472-8206.2008.00633.x>), also sometimes referred to as four-parameter log-logistic models. Includes tools to invert Hill models, select models based on the Akaike information criterion (Akaike, 1974 <doi:10.1109/TAC.1974.1100705>) or Bayesian information criterion (Schwarz, 1978 <https://www.jstor.org/stable/2958889>), and construct bootstrapped confidence intervals both on the Hill model parameters and values derived from the Hill model parameters.
Bayesian quantile regression using the asymmetric Laplace distribution, both continuous as well as binary dependent variables are supported. The package consists of implementations of the methods of Yu & Moyeed (2001) <doi:10.1016/S0167-7152(01)00124-9>, Benoit & Van den Poel (2012) <doi:10.1002/jae.1216> and Al-Hamzawi, Yu & Benoit (2012) <doi:10.1177/1471082X1101200304>. To speed up the calculations, the Markov Chain Monte Carlo core of all algorithms is programmed in Fortran and called from R.
Computational tools for outlier detection and influence diagnostics in meta-analysis (Noma et al. (2025) <doi:10.1101/2025.09.18.25336125>). Bootstrap distributions of influence statistics are computed, and explicit thresholds for identifying outliers are provided. These methods can also be applied to the analysis of influential centers or regions in multicenter or multiregional clinical trials (Aoki, Noma and Gosho (2021) <doi:10.1080/24709360.2021.1921944>, Nakamura and Noma (2021) <doi:10.5691/jjb.41.117>).
This package implements variable selection for high dimensional datasets with a binary response variable using the EM algorithm. Both probit and logit models are supported. Also included is a useful function to generate high dimensional data with correlated variables.
Designed to simplify and streamline the process of reading and processing large volumes of data in R, this package offers a collection of functions tailored for bulk data operations. It enables users to efficiently read multiple sheets from Microsoft Excel and Google Sheets workbooks, as well as various CSV files from a directory. The data is returned as organized data frames, facilitating further analysis and manipulation. Ideal for handling extensive data sets or batch processing tasks, bulkreadr empowers users to manage data in bulk effortlessly, saving time and effort in data preparation workflows. Additionally, the package seamlessly works with labelled data from SPSS and Stata.
This package provides Partial least squares Regression and various regular, sparse or kernel, techniques for fitting Cox models for big data. Provides a Partial Least Squares (PLS) algorithm adapted to Cox proportional hazards models that works with bigmemory matrices without loading the entire dataset in memory. Also implements a gradient-descent based solver for Cox proportional hazards models that works directly on bigmemory matrices. Bertrand and Maumy (2023) <https://hal.science/hal-05352069>, and <https://hal.science/hal-05352061> highlighted fitting and cross-validating PLS-based Cox models to censored big data.
This package provides functions for calculating biochemical methane potential (BMP) from laboratory measurements and other types of data processing and prediction useful for biogas research. Raw laboratory measurements for diverse methods (volumetric, manometric, gravimetric, gas density) can be processed to calculate BMP. Theoretical maximum BMP or methane or biogas yield can be predicted from various measures of substrate composition. Molar mass and calculated oxygen demand (COD') can be determined from a chemical formula. Measured gas volume can be corrected for water vapor and to standard (or user-defined) temperature and pressure. Gas quantity can be converted between volume, mass, and moles. A function for planning BMP experiments can consider multiple constraints in suggesting substrate or inoculum quantities, and check for problems. Inoculum and substrate mass can be determined for planning BMP experiments. Finally, a set of first-order models can be fit to measured methane production rate or cumulative yield in order to extract estimates of ultimate yield and kinetic constants. See Hafner et al. (2018) <doi:10.1016/j.softx.2018.06.005> for details. OBA is a web application that provides access to some of the package functionality: <https://biotransformers.shinyapps.io/oba1/>. The Standard BMP Methods website documents the calculations in detail: <https://www.dbfz.de/en/BMP>.
This package provides methods and tools for estimating, simulating and forecasting of so-called BEKK-models (named after Baba, Engle, Kraft and Kroner) based on the fast Berndtâ Hallâ Hallâ Hausman (BHHH) algorithm described in Hafner and Herwartz (2008) <doi:10.1007/s00184-007-0130-y>. For an overview, we refer the reader to Fülle et al. (2024) <doi:10.18637/jss.v111.i04>.
BEAST2 (<https://www.beast2.org>) is a widely used Bayesian phylogenetic tool, that uses DNA/RNA/protein data and many model priors to create a posterior of jointly estimated phylogenies and parameters. BEAUti 2 (which is part of BEAST2') is a GUI tool that allows users to specify the many possible setups and generates the XML file BEAST2 needs to run. This package provides a way to create BEAST2 input files without active user input, but using R function calls instead.
Modelling of population growth under static and dynamic environmental conditions. Includes functions for model fitting and making prediction under isothermal and dynamic conditions. The methods (algorithms & models) are based on predictive microbiology (See Perez-Rodriguez and Valero (2012, ISBN:978-1-4614-5519-6)).